Suppr超能文献

放射技师的人工智能教育:一项使用参与式行动研究对英国研究生教育干预措施的评估——一项试点研究。

Artificial intelligence education for radiographers, an evaluation of a UK postgraduate educational intervention using participatory action research: a pilot study.

作者信息

van de Venter Riaan, Skelton Emily, Matthew Jacqueline, Woznitza Nick, Tarroni Giacomo, Hirani Shashivadan P, Kumar Amrita, Malik Rizwan, Malamateniou Christina

机构信息

Department of Radiography, Faculty of Health Sciences, School of Clinical Care Sciences, Nelson Mandela University, Port Elizabeth, South Africa.

Division of Midwifery and Radiography, School of Health and Psychological Sciences, City, University of London, London, UK.

出版信息

Insights Imaging. 2023 Feb 3;14(1):25. doi: 10.1186/s13244-023-01372-2.

Abstract

BACKGROUND

Artificial intelligence (AI)-enabled applications are increasingly being used in providing healthcare services, such as medical imaging support. Sufficient and appropriate education for medical imaging professionals is required for successful AI adoption. Although, currently, there are AI training programmes for radiologists, formal AI education for radiographers is lacking. Therefore, this study aimed to evaluate and discuss a postgraduate-level module on AI developed in the UK for radiographers.

METHODOLOGY

A participatory action research methodology was applied, with participants recruited from the first cohort of students enrolled in this module and faculty members. Data were collected using online, semi-structured, individual interviews and focus group discussions. Textual data were processed using data-driven thematic analysis.

RESULTS

Seven students and six faculty members participated in this evaluation. Results can be summarised in the following four themes: a. participants' professional and educational backgrounds influenced their experiences, b. participants found the learning experience meaningful concerning module design, organisation, and pedagogical approaches, c. some module design and delivery aspects were identified as barriers to learning, and d. participants suggested how the ideal AI course could look like based on their experiences.

CONCLUSIONS

The findings of our work show that an AI module can assist educators/academics in developing similar AI education provisions for radiographers and other medical imaging and radiation sciences professionals. A blended learning delivery format, combined with customisable and contextualised content, using an interprofessional faculty approach is recommended for future similar courses.

摘要

背景

人工智能(AI)支持的应用程序越来越多地用于提供医疗保健服务,如医学影像支持。要成功采用人工智能,需要为医学影像专业人员提供充分且合适的教育。虽然目前有针对放射科医生的人工智能培训项目,但放射技师的正规人工智能教育却很缺乏。因此,本研究旨在评估和讨论英国为放射技师开发的一个研究生水平的人工智能模块。

方法

采用参与式行动研究方法,参与者招募自该模块首批入学的学生和教师。通过在线、半结构化的个人访谈和焦点小组讨论收集数据。使用数据驱动的主题分析对文本数据进行处理。

结果

七名学生和六名教师参与了此次评估。结果可归纳为以下四个主题:a. 参与者的专业和教育背景影响了他们的体验;b. 参与者认为在模块设计、组织和教学方法方面,学习体验很有意义;c. 一些模块设计和授课方面被确定为学习障碍;d. 参与者根据自身经历提出了理想的人工智能课程应是什么样的。

结论

我们的研究结果表明,一个人工智能模块可以帮助教育工作者/学者为放射技师以及其他医学影像和放射科学专业人员开发类似的人工智能教育课程。建议未来类似课程采用混合式学习授课形式,并结合可定制和情境化的内容,采用跨专业教师授课方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ab/9898477/769c8e379aa0/13244_2023_1372_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验