Suppr超能文献

二维能量直方图作为机器学习预测不同纳米多孔材料中吸附作用的特征

Two-Dimensional Energy Histograms as Features for Machine Learning to Predict Adsorption in Diverse Nanoporous Materials.

作者信息

Shi Kaihang, Li Zhao, Anstine Dylan M, Tang Dai, Colina Coray M, Sholl David S, Siepmann J Ilja, Snurr Randall Q

机构信息

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States.

Department of Materials Science and Engineering, University of Florida, Gainesville, Florida32611, United States.

出版信息

J Chem Theory Comput. 2023 Jul 25;19(14):4568-4583. doi: 10.1021/acs.jctc.2c00798. Epub 2023 Feb 3.

Abstract

A major obstacle for machine learning (ML) in chemical science is the lack of physically informed feature representations that provide both accurate prediction and easy interpretability of the ML model. In this work, we describe adsorption systems using novel two-dimensional energy histogram (2D-EH) features, which are obtained from the probe-adsorbent energies and energy gradients at grid points located throughout the adsorbent. The 2D-EH features encode both energetic and structural information of the material and lead to highly accurate ML models (coefficient of determination ∼ 0.94-0.99) for predicting single-component adsorption capacity in metal-organic frameworks (MOFs). We consider the adsorption of spherical molecules (Kr and Xe), linear alkanes with a wide range of aspect ratios (ethane, propane, -butane, and -hexane), and a branched alkane (2,2-dimethylbutane) over a wide range of temperatures and pressures. The interpretable 2D-EH features enable the ML model to learn the basic physics of adsorption in pores from the training data. We show that these MOF-data-trained ML models are transferrable to different families of amorphous nanoporous materials. We also identify several adsorption systems where capillary condensation occurs, and ML predictions are more challenging. Nevertheless, our 2D-EH features still outperform structural features including those derived from persistent homology. The novel 2D-EH features may help accelerate the discovery and design of advanced nanoporous materials using ML for gas storage and separation in the future.

摘要

机器学习(ML)在化学科学中的一个主要障碍是缺乏物理信息特征表示,这种表示既能提供准确的预测,又能使ML模型易于解释。在这项工作中,我们使用新颖的二维能量直方图(2D-EH)特征来描述吸附系统,这些特征是从遍布吸附剂的网格点处的探针-吸附剂能量和能量梯度获得的。2D-EH特征编码了材料的能量和结构信息,并导致用于预测金属有机框架(MOF)中单组分吸附容量的高精度ML模型(决定系数约为0.94-0.99)。我们考虑了球形分子(Kr和Xe)、具有广泛纵横比的线性烷烃(乙烷、丙烷、丁烷和己烷)以及一种支链烷烃(2,2-二甲基丁烷)在广泛的温度和压力范围内的吸附。可解释的2D-EH特征使ML模型能够从训练数据中学习孔隙中吸附的基本物理原理。我们表明,这些经过MOF数据训练的ML模型可转移到不同家族的无定形纳米多孔材料。我们还确定了几个发生毛细管冷凝的吸附系统,在这些系统中ML预测更具挑战性。尽管如此,我们的2D-EH特征仍然优于包括从持久同调导出的那些结构特征。这种新颖的2D-EH特征可能有助于在未来利用ML加速用于气体存储和分离的先进纳米多孔材料的发现和设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验