Suppr超能文献

气体吸附与深度学习相遇:对金属有机框架的势能表面进行体素化处理。

Gas adsorption meets deep learning: voxelizing the potential energy surface of metal-organic frameworks.

作者信息

Sarikas Antonios P, Gkagkas Konstantinos, Froudakis George E

机构信息

Department of Chemistry, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece.

Advanced Technology Division, Toyota Motor Europe NV/SA, Technical Center, Hoge Wei 33B, 1930, Zaventem, Belgium.

出版信息

Sci Rep. 2024 Jan 26;14(1):2242. doi: 10.1038/s41598-023-50309-8.

Abstract

Intrinsic properties of metal-organic frameworks (MOFs), such as their ultra porosity and high surface area, deem them promising solutions for problems involving gas adsorption. Nevertheless, due to their combinatorial nature, a huge number of structures is feasible which renders cumbersome the selection of the best candidates with traditional techniques. Recently, machine learning approaches have emerged as efficient tools to deal with this challenge, by allowing researchers to rapidly screen large databases of MOFs via predictive models. The performance of the latter is tightly tied to the mathematical representation of a material, thus necessitating the use of informative descriptors. In this work, a generalized framework to predict gaseous adsorption properties is presented, using as one and only descriptor the capstone of chemical information: the potential energy surface (PES). In order to be machine understandable, the PES is voxelized and subsequently a 3D convolutional neural network (CNN) is exploited to process this 3D energy image. As a proof of concept, the proposed pipeline is applied on predicting [Formula: see text] uptake in MOFs. The resulting model outperforms a conventional model built with geometric descriptors and requires two orders of magnitude less training data to reach a given level of performance. Moreover, the transferability of the approach to different host-guest systems is demonstrated, examining [Formula: see text] uptake in COFs. The generic character of the proposed methodology, inherited from the PES, renders it applicable to fields other than reticular chemistry.

摘要

金属有机框架材料(MOFs)的固有特性,如超高孔隙率和高比表面积,使其成为解决气体吸附问题的有前景的方案。然而,由于其组合性质,大量的结构是可行的,这使得用传统技术选择最佳候选材料变得繁琐。最近,机器学习方法已成为应对这一挑战的有效工具,它允许研究人员通过预测模型快速筛选大量的MOF数据库。后者的性能与材料的数学表示紧密相关,因此需要使用信息丰富的描述符。在这项工作中,提出了一个预测气体吸附特性的通用框架,仅使用化学信息的核心:势能面(PES)作为描述符。为了使机器能够理解,对PES进行体素化,随后利用三维卷积神经网络(CNN)处理这个三维能量图像。作为概念验证,将所提出的流程应用于预测MOF中的[公式:见原文]吸收。所得模型优于使用几何描述符构建的传统模型,并且达到给定性能水平所需的训练数据少两个数量级。此外,通过研究COF中的[公式:见原文]吸收,证明了该方法对不同主客体系统的可转移性。所提出方法的通用性源于PES,使其适用于网状化学以外的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab5e/10817925/ebd186693814/41598_2023_50309_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验