Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
J Biomed Inform. 2023 Mar;139:104303. doi: 10.1016/j.jbi.2023.104303. Epub 2023 Feb 2.
Expert microscopic analysis of cells obtained from frequent heart biopsies is vital for early detection of pediatric heart transplant rejection to prevent heart failure. Detection of this rare condition is prone to low levels of expert agreement due to the difficulty of identifying subtle rejection signs within biopsy samples. The rarity of pediatric heart transplant rejection also means that very few gold-standard images are available for developing machine learning models. To solve this urgent clinical challenge, we developed a deep learning model to automatically quantify rejection risk within digital images of biopsied tissue using an explainable synthetic data augmentation approach. We developed this explainable AI framework to illustrate how our progressive and inspirational generative adversarial network models distinguish between normal tissue images and those containing cellular rejection signs. To quantify biopsy-level rejection risk, we first detect local rejection features using a binary image classifier trained with expert-annotated and synthetic examples. We converted these local predictions into a biopsy-wide rejection score via an interpretable histogram-based approach. Our model significantly improves upon prior works with the same dataset with an area under the receiver operating curve (AUROC) of 98.84% for the local rejection detection task and 95.56% for the biopsy-rejection prediction task. A biopsy-level sensitivity of 83.33% makes our approach suitable for early screening of biopsies to prioritize expert analysis. Our framework provides a solution to rare medical imaging challenges currently limited by small datasets.
对频繁进行的心脏活检获得的细胞进行专家级微观分析,对于早期检测儿科心脏移植排斥反应、预防心力衰竭至关重要。由于在活检样本中识别细微排斥迹象的难度,这种罕见情况的检测容易出现专家一致性水平较低的问题。儿科心脏移植排斥反应的罕见性也意味着,用于开发机器学习模型的黄金标准图像非常少。为了解决这一紧迫的临床挑战,我们开发了一种深度学习模型,通过一种可解释的合成数据增强方法,自动量化活检组织数字图像中的排斥风险。我们开发了这个可解释的人工智能框架,以说明我们的渐进式和启发性生成对抗网络模型如何区分正常组织图像和包含细胞排斥迹象的图像。为了量化活检水平的排斥风险,我们首先使用经过专家注释和合成示例训练的二进制图像分类器来检测局部排斥特征。我们通过基于可解释的直方图的方法将这些局部预测转换为活检范围内的排斥评分。与具有相同数据集的先前工作相比,我们的模型有了显著的改进,局部排斥检测任务的接收者操作特征曲线(AUROC)为 98.84%,活检排斥预测任务的 AUROC 为 95.56%。活检水平的敏感性为 83.33%,使得我们的方法适用于早期筛选活检,以优先进行专家分析。我们的框架为目前受限于小数据集的罕见医学成像挑战提供了一种解决方案。