Adedinsewo Demilade, Hardway Heather D, Morales-Lara Andrea Carolina, Wieczorek Mikolaj A, Johnson Patrick W, Douglass Erika J, Dangott Bryan J, Nakhleh Raouf E, Narula Tathagat, Patel Parag C, Goswami Rohan M, Lyle Melissa A, Heckman Alexander J, Leoni-Moreno Juan C, Steidley D Eric, Arsanjani Reza, Hardaway Brian, Abbas Mohsin, Behfar Atta, Attia Zachi I, Lopez-Jimenez Francisco, Noseworthy Peter A, Friedman Paul, Carter Rickey E, Yamani Mohamad
Department of Cardiovascular Medicine, Division of Cardiovascular Diseases, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA.
Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA.
Eur Heart J Digit Health. 2023 Jan 13;4(2):71-80. doi: 10.1093/ehjdh/ztad001. eCollection 2023 Mar.
Current non-invasive screening methods for cardiac allograft rejection have shown limited discrimination and are yet to be broadly integrated into heart transplant care. Given electrocardiogram (ECG) changes have been reported with severe cardiac allograft rejection, this study aimed to develop a deep-learning model, a form of artificial intelligence, to detect allograft rejection using the 12-lead ECG (AI-ECG).
Heart transplant recipients were identified across three Mayo Clinic sites between 1998 and 2021. Twelve-lead digital ECG data and endomyocardial biopsy results were extracted from medical records. Allograft rejection was defined as moderate or severe acute cellular rejection (ACR) based on International Society for Heart and Lung Transplantation guidelines. The extracted data (7590 unique ECG-biopsy pairs, belonging to 1427 patients) was partitioned into training (80%), validation (10%), and test sets (10%) such that each patient was included in only one partition. Model performance metrics were based on the test set ( = 140 patients; 758 ECG-biopsy pairs). The AI-ECG detected ACR with an area under the receiver operating curve (AUC) of 0.84 [95% confidence interval (CI): 0.78-0.90] and 95% (19/20; 95% CI: 75-100%) sensitivity. A prospective proof-of-concept screening study ( = 56; 97 ECG-biopsy pairs) showed the AI-ECG detected ACR with AUC = 0.78 (95% CI: 0.61-0.96) and 100% (2/2; 95% CI: 16-100%) sensitivity.
An AI-ECG model is effective for detection of moderate-to-severe ACR in heart transplant recipients. Our findings could improve transplant care by providing a rapid, non-invasive, and potentially remote screening option for cardiac allograft function.
目前用于心脏移植排斥反应的非侵入性筛查方法显示出有限的鉴别能力,尚未广泛应用于心脏移植护理中。鉴于已有报道称严重心脏移植排斥反应会出现心电图(ECG)变化,本研究旨在开发一种深度学习模型(一种人工智能形式),利用12导联心电图检测移植排斥反应(AI-ECG)。
在1998年至2021年期间,在梅奥诊所的三个地点识别心脏移植受者。从医疗记录中提取12导联数字心电图数据和心内膜活检结果。根据国际心肺移植学会指南,将移植排斥反应定义为中度或重度急性细胞排斥反应(ACR)。提取的数据(7590对独特的心电图-活检数据,属于1427名患者)被分为训练集(80%)、验证集(10%)和测试集(10%),使得每位患者仅包含在一个数据集中。模型性能指标基于测试集(n = 140名患者;758对心电图-活检数据)。AI-ECG检测ACR的受试者操作特征曲线下面积(AUC)为0.84 [95%置信区间(CI):0.78 - 0.90],灵敏度为95%(19/20;95% CI:75 - 100%)。一项前瞻性概念验证筛查研究(n = 56;97对心电图-活检数据)显示,AI-ECG检测ACR的AUC = 0.78(95% CI:0.61 - 0.96),灵敏度为100%(2/2;95% CI:16 - 100%)。
AI-ECG模型可有效检测心脏移植受者的中度至重度ACR。我们的研究结果可为心脏移植功能提供一种快速、非侵入性且可能远程的筛查选项,从而改善移植护理。