深度学习评估心内膜心肌活检中的心脏移植物排斥反应。

Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies.

机构信息

Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.

出版信息

Nat Med. 2022 Mar;28(3):575-582. doi: 10.1038/s41591-022-01709-2. Epub 2022 Mar 21.

Abstract

Endomyocardial biopsy (EMB) screening represents the standard of care for detecting allograft rejections after heart transplant. Manual interpretation of EMBs is affected by substantial interobserver and intraobserver variability, which often leads to inappropriate treatment with immunosuppressive drugs, unnecessary follow-up biopsies and poor transplant outcomes. Here we present a deep learning-based artificial intelligence (AI) system for automated assessment of gigapixel whole-slide images obtained from EMBs, which simultaneously addresses detection, subtyping and grading of allograft rejection. To assess model performance, we curated a large dataset from the United States, as well as independent test cohorts from Turkey and Switzerland, which includes large-scale variability across populations, sample preparations and slide scanning instrumentation. The model detects allograft rejection with an area under the receiver operating characteristic curve (AUC) of 0.962; assesses the cellular and antibody-mediated rejection type with AUCs of 0.958 and 0.874, respectively; detects Quilty B lesions, benign mimics of rejection, with an AUC of 0.939; and differentiates between low-grade and high-grade rejections with an AUC of 0.833. In a human reader study, the AI system showed non-inferior performance to conventional assessment and reduced interobserver variability and assessment time. This robust evaluation of cardiac allograft rejection paves the way for clinical trials to establish the efficacy of AI-assisted EMB assessment and its potential for improving heart transplant outcomes.

摘要

心肌内膜活检 (EMB) 筛查是检测心脏移植后同种异体排斥反应的标准护理方法。EMB 的手动解释受到观察者间和观察者内变异性的显著影响,这常常导致免疫抑制药物的不当治疗、不必要的随访活检和较差的移植结果。在这里,我们提出了一种基于深度学习的人工智能 (AI) 系统,用于自动评估从 EMB 获得的千兆像素全幻灯片图像,该系统同时解决同种异体排斥反应的检测、亚型和分级问题。为了评估模型性能,我们从美国、土耳其和瑞士独立的测试队列中整理了一个大型数据集,其中包括人群、样本制备和幻灯片扫描仪器的大规模变异性。该模型检测同种异体排斥的曲线下面积 (AUC) 为 0.962;评估细胞和抗体介导的排斥类型的 AUC 分别为 0.958 和 0.874;检测 Quilty B 病变(排斥的良性模拟物)的 AUC 为 0.939;区分低等级和高等级排斥的 AUC 为 0.833。在人类读者研究中,AI 系统的表现与传统评估相当,且减少了观察者间的变异性和评估时间。这项对心脏同种异体移植排斥的稳健评估为临床试验奠定了基础,以确定 AI 辅助 EMB 评估的疗效及其改善心脏移植结果的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索