Meese Tim S, Baker Daniel H
College of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK.
Department of Psychology and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK.
Neuroscience. 2023 Mar 15;514:79-91. doi: 10.1016/j.neuroscience.2023.01.025. Epub 2023 Feb 2.
In previous psychophysical work we found that luminance contrast is integrated over retinal area subject to contrast gain control. If different mechanisms perform this operation for a range of superimposed retinal regions of different sizes, this could provide the basis for size-coding. To test this idea we included two novel features in a standard adaptation paradigm to discount more pedestrian accounts of repulsive size-aftereffects. First, we used spatially jittering luminance-contrast adaptors to avoid simple contour displacement aftereffects. Second, we decoupled adaptor and target spatial frequency to avoid the well-known spatial frequency shift aftereffect. Empirical results indicated strong evidence of a bidirectional size adaptation aftereffect. We show that the textbook population model is inappropriate for our results, and develop our existing model of contrast perception to include multiple size mechanisms with divisive surround-suppression from the largest mechanism. For a given stimulus patch, this delivers a blurred step-function of responses across the population, with contrast and size encoded by the height and lateral position of the step. Unlike for textbook population coding schemes, our human results (N = 4 male, N = 4 female) displayed two asymmetries: (i) size aftereffects were greatest for targets smaller than the adaptor, and (ii) on that side of the function, results did not return to baseline, even when targets were 25% of adaptor diameter. Our results and emergent model properties provide evidence for a novel dimension of visual coding (size) and a novel strategy for that coding, consistent with previous results on contrast detection and discrimination for various stimulus sizes.
在之前的心理物理学研究中,我们发现亮度对比度是在视网膜区域上进行整合的,且受到对比度增益控制。如果不同的机制针对一系列不同大小的叠加视网膜区域执行此操作,那么这可能为大小编码提供基础。为了验证这一想法,我们在标准适应范式中纳入了两个新特性,以排除对排斥性大小后效应更为常见的解释。首先,我们使用空间抖动的亮度对比度适应刺激来避免简单的轮廓位移后效应。其次,我们将适应刺激和目标的空间频率解耦,以避免众所周知的空间频率偏移后效应。实证结果表明存在双向大小适应后效应的有力证据。我们表明,教科书式的群体模型不适用于我们的结果,并对我们现有的对比度感知模型进行了拓展,使其纳入多个大小机制,并从最大的机制引入分裂性的外周抑制。对于给定的刺激斑块,这会在群体中产生一个模糊的阶跃函数响应,对比度和大小由阶跃的高度和横向位置编码。与教科书式的群体编码方案不同,我们的人体实验结果(4名男性,4名女性)显示出两种不对称性:(i)对于小于适应刺激的目标,大小后效应最为显著;(ii)在该函数的这一侧,即使目标大小为适应刺激直径的25%,结果也不会恢复到基线水平。我们的结果和新出现的模型特性为视觉编码的一个新维度(大小)以及该编码的一种新策略提供了证据,这与之前关于各种刺激大小的对比度检测和辨别结果一致。