Suppr超能文献

使用组成型人工神经网络进行人类大脑的自动模型发现。

Automated model discovery for human brain using Constitutive Artificial Neural Networks.

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, California, USA.

Department of Mechanical Engineering, Stanford University, Stanford, California, USA.

出版信息

Acta Biomater. 2023 Apr 1;160:134-151. doi: 10.1016/j.actbio.2023.01.055. Epub 2023 Feb 2.

Abstract

The brain is our softest and most vulnerable organ, and understanding its physics is a challenging but significant task. Throughout the past decade, numerous competing models have emerged to characterize its response to mechanical loading. However, selecting the best constitutive model remains a heuristic process that strongly depends on user experience and personal preference. Here we challenge the conventional wisdom to first select a constitutive model and then fit its parameters to data. Instead, we propose a new strategy that simultaneously discovers both model and parameters. We integrate more than a century of knowledge in thermodynamics and state-of-the-art machine learning to build a Constitutive Artificial Neural Network that enables automated model discovery. Our design paradigm is to reverse engineer the network from a set of functional building blocks that are, by design, a generalization of popular constitutive models, including the neo Hookean, Blatz Ko, Mooney Rivlin, Demiray, Gent, and Holzapfel models. By constraining input, output, activation functions, and architecture, our network a priori satisfies thermodynamic consistency, objectivity, symmetry, and polyconvexity. We demonstrate that-out of more than 4000 models-our network autonomously discovers the model and parameters that best characterize the behavior of human gray and white matter under tension, compression, and shear. Importantly, our network weights translate naturally into physically meaningful parameters, such as shear moduli of 1.82kPa, 0.88kPa, 0.94kPa, and 0.54kPa for the cortex, basal ganglia, corona radiata, and corpus callosum. Our results suggest that Constitutive Artificial Neural Networks have the potential to induce a paradigm shift in soft tissue modeling, from user-defined model selection to automated model discovery. Our source code, data, and examples are available at https://github.com/LivingMatterLab/CANN. STATEMENT OF SIGNIFICANCE: Human brain is ultrasoft, difficult to test, and challenging to model. Numerous competing constitutive models exist, but selecting the best model remains a matter of personal preference. Here we automate the process of model selection. We formulate the problem of autonomous model discovery as a neural network and capitalize on the powerful optimizers in deep learning. However, rather than using a conventional neural network, we reverse engineer our own Constitutive Artificial Neural Network from a set of modular building blocks, which we rationalize from common constitutive models. When trained with tension, compression, and shear experiments of gray and white matter, our network simultaneously discovers both model and parameters that describes the data better than any existing invariant-based model. Our network could induce a paradigm shift from user-defined model selection to automated model discovery.

摘要

大脑是我们最柔软、最脆弱的器官,理解它的物理性质是一项具有挑战性但意义重大的任务。在过去的十年中,已经出现了许多竞争性的模型来描述大脑对机械加载的响应。然而,选择最佳的本构模型仍然是一个启发式过程,强烈依赖于用户经验和个人偏好。在这里,我们挑战传统的观点,即先选择本构模型,然后再根据数据拟合其参数。相反,我们提出了一种新的策略,即同时发现模型和参数。我们整合了一个多世纪的热力学知识和最先进的机器学习技术,构建了一个本构人工神经网络,实现了模型的自动发现。我们的设计范式是从一组功能构建块反向工程网络,这些构建块通过设计是流行本构模型的广义化,包括新胡克定律、布拉茨科模型、摩尔-里夫林模型、德米尔雷模型、金特模型和霍尔茨阿费尔模型。通过约束输入、输出、激活函数和架构,我们的网络在热力学一致性、客观性、对称性和多凸性方面具有先验性。我们证明,在超过 4000 个模型中,我们的网络可以自动发现最能描述人灰质和白质在拉伸、压缩和剪切下行为的模型和参数。重要的是,我们的网络权重可以自然转化为具有物理意义的参数,例如皮质、基底神经节、辐射冠和胼胝体的剪切模量分别为 1.82kPa、0.88kPa、0.94kPa 和 0.54kPa。我们的结果表明,本构人工神经网络有可能引发软组织建模的范式转变,从用户定义的模型选择转变为自动模型发现。我们的源代码、数据和示例可在 https://github.com/LivingMatterLab/CANN 上获得。

意义

人类大脑超软,难以测试,建模具有挑战性。存在许多竞争性的本构模型,但选择最佳模型仍然是个人偏好的问题。在这里,我们使模型选择过程自动化。我们将自主模型发现问题表述为一个神经网络,并利用深度学习中的强大优化器。然而,我们不是使用传统的神经网络,而是从一组模块化构建块反向工程我们自己的本构人工神经网络,这些构建块是从常见的本构模型中合理化的。当用灰质和白质的拉伸、压缩和剪切实验对其进行训练时,我们的网络同时发现了比任何现有基于不变量的模型都能更好地描述数据的模型和参数。我们的网络可以从用户定义的模型选择转变为自动模型发现,从而引发范式转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验