Statistics and Decision Sciences, Janssen Pharmaceutical Companies of Johnson and Johnson, Belgium.
Statistics and Decision Sciences, Janssen Pharmaceutical Companies of Johnson and Johnson, Belgium.
SLAS Discov. 2023 Apr;28(3):111-117. doi: 10.1016/j.slasd.2023.01.007. Epub 2023 Feb 2.
Recent advances in automated microscopy and image analysis enables quantitative profiling of cellular phenotypes (Cell Painting). It paves the way for studying the broad effects of chemical perturbations on biological systems at large scale during lead optimization. Comparison of perturbation biosignatures with biosignatures of annotated compounds can inform on both on- and off-target effects. When building databases with phenotypic profiles of thousands of compounds, it is vital to control the quality of Cell Painting assays over time. A tool for this to our knowledge does not yet exist within the imaging community. In this paper, we introduce an automated tool to assess the quality of Cell Painting assays by quantifying the reproducibility of biosignatures of annotated reference compounds. The tool learns the biosignature of those treatments from a historical dataset, and subsequently, it builds a two-dimensional probabilistic quality control (QC) limit. The limit will then be used to detect aberrations in new Cell Painting experiments. The tool is illustrated using simulated data and further demonstrated on Cell Painting data of the A549 cell line. In general, the tool provides a sensitive, detailed and easy-to-interpret mechanism to validate the quality of Cell Painting assays.
自动化显微镜和图像分析的最新进展使我们能够对细胞表型进行定量分析(细胞染色)。它为在先导优化过程中大规模研究化学干扰对生物系统的广泛影响铺平了道路。将生物干扰特征与注释化合物的生物特征进行比较,可以为靶点和非靶点效应提供信息。在构建包含数千种化合物表型特征的数据库时,随着时间的推移,控制细胞染色测定的质量至关重要。据我们所知,在成像界还没有这样的工具。在本文中,我们引入了一种自动化工具,通过量化注释参考化合物的生物特征的重现性来评估细胞染色测定的质量。该工具从历史数据集学习这些处理的生物特征,随后构建二维概率质量控制(QC)限。然后,该限制将用于检测新的细胞染色实验中的异常情况。该工具使用模拟数据进行说明,并进一步在 A549 细胞系的细胞染色数据上进行了演示。总的来说,该工具提供了一种敏感、详细和易于解释的机制,用于验证细胞染色测定的质量。