Suppr超能文献

评估细胞画技术在不同成像系统中的性能。

Assessing the performance of the Cell Painting assay across different imaging systems.

机构信息

Department: Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.

Nikon Instruments Inc., Melville, New York, USA.

出版信息

Cytometry A. 2023 Nov;103(11):915-926. doi: 10.1002/cyto.a.24786. Epub 2023 Oct 3.

Abstract

Quantitative microscopy is a powerful method for performing phenotypic screens from which image-based profiling can extract a wealth of information, termed profiles. These profiles can be used to elucidate the changes in cellular phenotypes across cell populations from different patient samples or following genetic or chemical perturbations. One such image-based profiling method is the Cell Painting assay, which provides morphological insight through the imaging of eight cellular compartments. Here, we examine the performance of the Cell Painting assay across multiple high-throughput microscope systems and find that all are compatible with this assay. Furthermore, we determine independently for each microscope system the best performing settings, providing those who wish to adopt this assay an ideal starting point for their own assays. We also explore the impact of microscopy setting changes in the Cell Painting assay and find that few dramatically reduce the quality of a Cell Painting profile, regardless of the microscope used.

摘要

定量显微镜是一种强大的方法,可以进行表型筛选,从基于图像的分析中提取大量信息,称为图谱。这些图谱可用于阐明来自不同患者样本或遗传或化学干扰后的细胞群体中细胞表型的变化。基于图像的分析方法之一是细胞染色分析,该方法通过对八个细胞区室的成像来提供形态学见解。在这里,我们检查了细胞染色分析在多个高通量显微镜系统中的性能,发现所有系统都与该分析兼容。此外,我们为每个显微镜系统独立确定了性能最佳的设置,为那些希望采用该分析的人提供了他们自己的分析的理想起点。我们还研究了显微镜设置变化对细胞染色分析的影响,发现无论使用哪种显微镜,很少有设置会显著降低细胞染色图谱的质量。

相似文献

1
Assessing the performance of the Cell Painting assay across different imaging systems.
Cytometry A. 2023 Nov;103(11):915-926. doi: 10.1002/cyto.a.24786. Epub 2023 Oct 3.
2
Assessing the performance of the Cell Painting assay across different imaging systems.
bioRxiv. 2023 Jun 26:2023.02.15.528711. doi: 10.1101/2023.02.15.528711.
3
The Cell Painting Assay as a Screening Tool for the Discovery of Bioactivities in New Chemical Matter.
Methods Mol Biol. 2019;1888:115-126. doi: 10.1007/978-1-4939-8891-4_6.
4
Phenotypic Profiling of Reference Chemicals across Biologically Diverse Cell Types Using the Cell Painting Assay.
SLAS Discov. 2020 Aug;25(7):755-769. doi: 10.1177/2472555220928004. Epub 2020 Jun 17.
6
Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes.
Nat Protoc. 2016 Sep;11(9):1757-74. doi: 10.1038/nprot.2016.105. Epub 2016 Aug 25.
7
Automated quality control tool for high-content imaging data by building 2D prediction intervals on reference biosignatures.
SLAS Discov. 2023 Apr;28(3):111-117. doi: 10.1016/j.slasd.2023.01.007. Epub 2023 Feb 2.
8
Predicting cell health phenotypes using image-based morphology profiling.
Mol Biol Cell. 2021 Apr 19;32(9):995-1005. doi: 10.1091/mbc.E20-12-0784. Epub 2021 Feb 3.
9
Label-free prediction of cell painting from brightfield images.
Sci Rep. 2022 Jun 15;12(1):10001. doi: 10.1038/s41598-022-12914-x.
10
Optimizing the Cell Painting assay for image-based profiling.
Nat Protoc. 2023 Jul;18(7):1981-2013. doi: 10.1038/s41596-023-00840-9. Epub 2023 Jun 21.

引用本文的文献

1
Triple-effect correction for Cell Painting data with contrastive and domain-adversarial learning.
Nat Commun. 2025 Jul 25;16(1):6886. doi: 10.1038/s41467-025-62193-z.
3
Prediction of Bioactive Metabolites from American Using Network Integrating Cellular Morphological Profiling and Mass Spectrometry Data.
J Nat Prod. 2025 Jul 25;88(7):1557-1567. doi: 10.1021/acs.jnatprod.4c01458. Epub 2025 Jul 11.
6
Bridging imaging-based in vitro methods from biomedical research to regulatory toxicology.
Arch Toxicol. 2025 Apr;99(4):1271-1285. doi: 10.1007/s00204-024-03922-z. Epub 2025 Feb 13.
7
Cell Painting: a decade of discovery and innovation in cellular imaging.
Nat Methods. 2025 Feb;22(2):254-268. doi: 10.1038/s41592-024-02528-8. Epub 2024 Dec 5.
8
Unleashing the potential of cell painting assays for compound activities and hazards prediction.
Front Toxicol. 2024 Jul 17;6:1401036. doi: 10.3389/ftox.2024.1401036. eCollection 2024.
9
A Decade in a Systematic Review: The Evolution and Impact of Cell Painting.
bioRxiv. 2024 May 7:2024.05.04.592531. doi: 10.1101/2024.05.04.592531.

本文引用的文献

1
Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations.
Nat Methods. 2024 Jun;21(6):1114-1121. doi: 10.1038/s41592-024-02241-6. Epub 2024 Apr 9.
2
Learning representations for image-based profiling of perturbations.
Nat Commun. 2024 Feb 21;15(1):1594. doi: 10.1038/s41467-024-45999-1.
3
Optimizing the Cell Painting assay for image-based profiling.
Nat Protoc. 2023 Jul;18(7):1981-2013. doi: 10.1038/s41596-023-00840-9. Epub 2023 Jun 21.
5
Morphology and gene expression profiling provide complementary information for mapping cell state.
Cell Syst. 2022 Nov 16;13(11):911-923.e9. doi: 10.1016/j.cels.2022.10.001. Epub 2022 Oct 28.
6
Virtual screening for small-molecule pathway regulators by image-profile matching.
Cell Syst. 2022 Sep 21;13(9):724-736.e9. doi: 10.1016/j.cels.2022.08.003. Epub 2022 Sep 2.
7
Label-free prediction of cell painting from brightfield images.
Sci Rep. 2022 Jun 15;12(1):10001. doi: 10.1038/s41598-022-12914-x.
8
CellProfiler 4: improvements in speed, utility and usability.
BMC Bioinformatics. 2021 Sep 10;22(1):433. doi: 10.1186/s12859-021-04344-9.
9
Predicting cell health phenotypes using image-based morphology profiling.
Mol Biol Cell. 2021 Apr 19;32(9):995-1005. doi: 10.1091/mbc.E20-12-0784. Epub 2021 Feb 3.
10
Image-based profiling for drug discovery: due for a machine-learning upgrade?
Nat Rev Drug Discov. 2021 Feb;20(2):145-159. doi: 10.1038/s41573-020-00117-w. Epub 2020 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验