Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK.
CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain.
Adv Sci (Weinh). 2023 Apr;10(11):e2207178. doi: 10.1002/advs.202207178. Epub 2023 Feb 3.
Bottom-up assembly of nanoparticle-on-mirror (NPoM) nanocavities enables precise inter-metal gap control down to ≈ 0.4 nm for confining light to sub-nanometer scales, thereby opening opportunities for developing innovative nanophotonic devices. However limited understanding, prediction, and optimization of light coupling and the difficulty of controlling nanoparticle facet shapes restricts the use of such building blocks. Here, an ultraprecise symmetry-breaking plasmonic nanocavity based on gold nanodecahedra is presented, to form the nanodecahedron-on-mirror (NDoM) which shows highly consistent cavity modes and fields. By characterizing > 20 000 individual NDoMs, the variability of light in/output coupling is thoroughly explored and a set of robust higher-order plasmonic whispering gallery modes uniquely localized at the edges of the triangular facet in contact with the metallic substrate is found. Assisted by quasinormal mode simulations, systematic elaboration of NDoMs is proposed to give nanocavities with near hundred-fold enhanced radiative efficiencies. Such systematically designed and precisely-assembled metallic nanocavities will find broad application in nanophotonic devices, optomechanics, and surface science.
基于纳米粒子上镜(NPoM)的自下而上组装方法可实现金属间间隙的精确控制,最小间隙可达 ≈ 0.4nm,从而将光限制在亚纳米尺度,为开发创新型纳米光子器件提供了机会。然而,对光耦合的理解、预测和优化有限,以及控制纳米粒子面形状的困难,限制了这些构建块的使用。本文提出了一种基于金纳米十面体的超精密对称破缺等离子体纳米腔,形成纳米十面体上镜(NDoM),其具有高度一致的腔模和场。通过对 >20000 个个体 NDoM 进行特性分析,彻底探索了光输入/输出耦合的可变性,并发现了一组独特地位于与金属基底接触的三角形面边缘处的强高阶等离子体 whispering gallery 模式。借助拟正规模式模拟,提出了对 NDoM 的系统阐述,得到了近百倍增强的辐射效率的纳米腔。这种经过系统设计和精确组装的金属纳米腔将在纳米光子器件、光机械和表面科学中得到广泛应用。