Suppr超能文献

单分子与金属结合中能垒的光学抑制

Optical suppression of energy barriers in single molecule-metal binding.

作者信息

Lin Qianqi, Hu Shu, Földes Tamás, Huang Junyang, Wright Demelza, Griffiths Jack, Elliott Eoin, de Nijs Bart, Rosta Edina, Baumberg Jeremy J

机构信息

Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, England, UK.

Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, UK.

出版信息

Sci Adv. 2022 Jun 24;8(25):eabp9285. doi: 10.1126/sciadv.abp9285.

Abstract

Transient bonds between molecules and metal surfaces underpin catalysis, bio/molecular sensing, molecular electronics, and electrochemistry. Techniques aiming to characterize these bonds often yield conflicting conclusions, while single-molecule probes are scarce. A promising prospect confines light inside metal nanogaps to elicit in operando vibrational signatures through surface-enhanced Raman scattering. Here, we show through analysis of more than a million spectra that light irradiation of only a few microwatts on molecules at gold facets is sufficient to overcome the metallic bonds between individual gold atoms and pull them out to form coordination complexes. Depending on the molecule, these light-extracted adatoms persist for minutes under ambient conditions. Tracking their power-dependent formation and decay suggests that tightly trapped light transiently reduces energy barriers at the metal surface. This opens intriguing prospects for photocatalysis and controllable low-energy quantum devices such as single-atom optical switches.

摘要

分子与金属表面之间的瞬态键是催化、生物/分子传感、分子电子学和电化学的基础。旨在表征这些键的技术常常得出相互矛盾的结论,而单分子探针却很稀少。一个有前景的方法是将光限制在金属纳米间隙内,通过表面增强拉曼散射来获取原位振动特征。在这里,我们通过对超过一百万个光谱的分析表明,在金表面上,仅几微瓦的光照射分子就足以克服单个金原子之间的金属键,并将它们拉出形成配位络合物。根据分子的不同,这些光提取的吸附原子在环境条件下可持续存在数分钟。追踪它们与功率相关的形成和衰减表明,紧密捕获的光会暂时降低金属表面的能垒。这为光催化和可控低能量量子器件(如单原子光开关)开辟了有趣的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0432/9232110/cb98861425b1/sciadv.abp9285-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验