Division of Vascular and Endovascular Surgery, Cardiovascular Department, Trieste University Hospital ASUIGI, Trieste, Italy.
Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, USA.
Eur J Vasc Endovasc Surg. 2023 Jul;66(1):27-36. doi: 10.1016/j.ejvs.2023.01.047. Epub 2023 Feb 3.
The effect of body mass index (BMI) on post-operative outcomes after abdominal aortic aneurysm (AAA) repair remains poorly defined. The association between BMI and death following elective endovascular aneurysm repair (EVAR) and open aneurysm repair (OAR) of AAA in a large national quality registry is investigated.
All elective AAA repairs within the Society for Vascular Surgery Vascular Quality Initiative (VQI; 2010 to September 2021) were reviewed (EVAR, n = 53 426; OAR, n = 9 479). All analyses were conducted separately for EVAR and OAR patients. The primary end points were 30 day mortality and five year survival rates. Study cohorts were divided into World Health Organisation BMI categories (C1 < 18.5, C2 18.5 ≤ BMI < 25, C3 25 ≤ BMI < 30, C4, 30 ≤ BMI < 35, C5 35 ≤ BMI < 40, C6 ≥ 40). BMI was examined as both a categorical and continuous variable. Logistic and Cox proportional hazards regression were used for risk adjustment.
Among EVAR patients, BMI distribution was C1, 1 216 (2%); C2, 14 687 (28%); C3, 20 516 (38%); C4, 11 352 (21%); C5, 3 947 (7%); C6, 1 708 (3%). Class 1, 2, and 6 BMI patients experienced an increased 30 day mortality rate (C1 2.6%; C2 1.3%; C6 1.4% vs. C3 - 5 0.7%; p < .001) and C1 and C2 had correspondingly inferior long term survival (five years: C1 69 ± 3%; C2 79 ± 1% vs. C3 - 6 86 - 88 ± 2%; log rank p < .001). These survival disparities persisted after risk adjustment for multiple confounders. In the OAR cohort, BMI distribution was C1, 280 (3%); C2, 2 862 (30%); C3, 3 587 (38%); C4, 1 940 (21%); C5, 581 (6%); C6, 229 (2%). Crude 30 day mortality rates were increased for both the lowest and highest BMI patients (C1 12%, C6 7% vs. C2 - 5 3 - 4%; p < .001); these differences also persisted in long term survival (five years: C1 71 ± 6%, C6 82 ± 6% vs. C2 - 6 85 - 88 ± 3%; log rank p < .001). In risk adjusted analysis, both low and high BMI OAR patients had an increased 30 day and long term mortality rate.
Within the VQI, both the extreme low (< 18.5) and high (≥ 40) BMI groups experienced an increased 30 day mortality rate after both elective EVAR and OAR. By comparison, while the lowest BMI cohort was significantly associated with decreased long term survival after both procedures, the highest BMI group only experienced reduced long term survival after OAR. Based upon this large real world registry analysis of elective AAA repairs, differential metabolic signatures exist within extreme BMI categories, which may inform peri-operative risk stratification and clinical decision making.
体质量指数(BMI)对腹主动脉瘤(AAA)修复术后结局的影响仍定义不明确。本研究旨在调查在大型国家质量注册中心中,BMI与择期血管内修复术(EVAR)和开放修复术(OAR)后AAA患者死亡的关系。
回顾了血管外科学会血管质量倡议(VQI;2010 年至 2021 年 9 月)内所有择期 AAA 修复术(EVAR,n=53426;OAR,n=9479)。分别对 EVAR 和 OAR 患者进行了所有分析。主要终点为 30 天死亡率和 5 年生存率。研究队列分为世界卫生组织 BMI 类别(C1<18.5,C2 18.5≤BMI<25,C3 25≤BMI<30,C4,30≤BMI<35,C5 35≤BMI<40,C6≥40)。BMI 既作为分类变量也作为连续变量进行了检查。使用逻辑和 Cox 比例风险回归进行风险调整。
在 EVAR 患者中,BMI 分布为 C1,1.216(2%);C2,14687(28%);C3,20516(38%);C4,11352(21%);C5,3947(7%);C6,1708(3%)。1 类、2 类和 6 类 BMI 患者的 30 天死亡率增加(C1 2.6%;C2 1.3%;C6 1.4% vs. C3-5 0.7%;p<0.001),C1 和 C2 患者的长期生存率相应降低(5 年:C1 69±3%;C2 79±1% vs. C3-6 86-88±2%;对数秩检验 p<0.001)。这些生存差异在调整了多种混杂因素后仍然存在。在 OAR 队列中,BMI 分布为 C1,280(3%);C2,2862(30%);C3,3587(38%);C4,1940(21%);C5,581(6%);C6,229(2%)。最低和最高 BMI 患者的 30 天死亡率均升高(C1 12%,C6 7% vs. C2-5 3-4%;p<0.001);这些差异在长期生存率中仍然存在(5 年:C1 71±6%,C6 82±6% vs. C2-6 85-88±3%;对数秩检验 p<0.001)。在风险调整分析中,低 BMI 和高 BMI 的 OAR 患者的 30 天和长期死亡率均增加。
在 VQI 中,低 BMI(<18.5)和高 BMI(≥40)患者在接受择期 EVAR 和 OAR 后 30 天死亡率均增加。相比之下,尽管最低 BMI 队列与两种手术的长期生存率显著降低相关,但最高 BMI 组仅在 OAR 后长期生存率降低。基于对择期 AAA 修复术的大型真实世界注册中心分析,在极端 BMI 类别中存在不同的代谢特征,这可能有助于围手术期风险分层和临床决策。