Suppr超能文献

用于基于电子显微镜的人类脑活检连接组学的多立方毫米体积的沉浸固定和染色。

Immersion Fixation and Staining of Multicubic Millimeter Volumes for Electron Microscopy-Based Connectomics of Human Brain Biopsies.

机构信息

Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts.

Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts.

出版信息

Biol Psychiatry. 2023 Aug 15;94(4):352-360. doi: 10.1016/j.biopsych.2023.01.025. Epub 2023 Feb 3.

Abstract

Connectomics allows mapping of cells and their circuits at the nanometer scale in volumes of approximately 1 mm. Given that the human cerebral cortex can be 3 mm in thickness, larger volumes are required. Larger-volume circuit reconstructions of human brain are limited by 1) the availability of fresh biopsies; 2) the need for excellent preservation of ultrastructure, including extracellular space; and 3) the requirement of uniform staining throughout the sample, among other technical challenges. Cerebral cortical samples from neurosurgical patients are available owing to lead placement for deep brain stimulation. Described here is an immersion fixation, heavy metal staining, and tissue processing method that consistently provides excellent ultrastructure throughout human and rodent surgical brain samples of volumes 2 × 2 × 2 mm and up to 37 mm with one dimension ≤2 mm. This method should allow synapse-level circuit analysis in samples from patients with psychiatric and neurologic disorders.

摘要

连接组学可以在大约 1 毫米的体积中以纳米级的精度绘制细胞及其回路。由于人类大脑皮层的厚度可以达到 3 毫米,因此需要更大的体积。更大体积的人脑回路重建受到以下因素的限制:1)新鲜活检的可用性;2)需要极好地保存超微结构,包括细胞外空间;3)需要在整个样本中均匀染色,以及其他技术挑战。由于需要进行深部脑刺激的电极放置,因此可以获得神经外科患者的大脑皮质样本。本文描述了一种浸没法固定、重金属染色和组织处理方法,该方法可以在体积为 2×2×2 毫米至 37 毫米的人和啮齿动物手术脑样本中提供出色的超微结构,其中一个维度≤2 毫米。这种方法应该可以在患有精神和神经疾病的患者样本中进行突触水平的回路分析。

相似文献

1
Immersion Fixation and Staining of Multicubic Millimeter Volumes for Electron Microscopy-Based Connectomics of Human Brain Biopsies.
Biol Psychiatry. 2023 Aug 15;94(4):352-360. doi: 10.1016/j.biopsych.2023.01.025. Epub 2023 Feb 3.
2
Large-volume en-bloc staining for electron microscopy-based connectomics.
Nat Commun. 2015 Aug 3;6:7923. doi: 10.1038/ncomms8923.
3
Staining and embedding the whole mouse brain for electron microscopy.
Nat Methods. 2012 Dec;9(12):1198-201. doi: 10.1038/nmeth.2213. Epub 2012 Oct 21.
4
In situ X-ray-assisted electron microscopy staining for large biological samples.
Elife. 2022 Oct 20;11:e72147. doi: 10.7554/eLife.72147.
5
Preserving extracellular space for high-quality optical and ultrastructural studies of whole mammalian brains.
Cell Rep Methods. 2023 Jul 5;3(7):100520. doi: 10.1016/j.crmeth.2023.100520. eCollection 2023 Jul 24.
6
SegEM: Efficient Image Analysis for High-Resolution Connectomics.
Neuron. 2015 Sep 23;87(6):1193-1206. doi: 10.1016/j.neuron.2015.09.003.
7
SynEM, automated synapse detection for connectomics.
Elife. 2017 Jul 14;6:e26414. doi: 10.7554/eLife.26414.
8
Fast Homogeneous Staining of Large Tissue Samples for Volume Electron Microscopy.
Front Neuroanat. 2018 Sep 28;12:76. doi: 10.3389/fnana.2018.00076. eCollection 2018.
9
High-resolution whole-brain staining for electron microscopic circuit reconstruction.
Nat Methods. 2015 Jun;12(6):541-6. doi: 10.1038/nmeth.3361. Epub 2015 Apr 13.
10
A Scalable Staining Strategy for Whole-Brain Connectomics.
bioRxiv. 2023 Sep 27:2023.09.26.558265. doi: 10.1101/2023.09.26.558265.

引用本文的文献

1
Volume electron microscopy reveals 3D synaptic nanoarchitecture in postmortem human prefrontal cortex.
iScience. 2025 May 26;28(7):112747. doi: 10.1016/j.isci.2025.112747. eCollection 2025 Jul 18.
2
Evaluating ultrastructural preservation quality in banked brain tissue.
Free Neuropathol. 2025 Jun 25;6:13. doi: 10.17879/freeneuropathology-2025-6763. eCollection 2025.
3
MRI and non-MRI quantifiable neuroanatomical and functional parameters are useful for tractography.
Brain Struct Funct. 2025 Jun 5;230(6):83. doi: 10.1007/s00429-025-02932-6.
4
Evaluating ultrastructural preservation quality in banked brain tissue.
bioRxiv. 2025 May 14:2025.05.09.652503. doi: 10.1101/2025.05.09.652503.
5
Preservation of cellular structure via immersion fixation in brain banking.
Free Neuropathol. 2025 Feb 4;6:4. doi: 10.17879/freeneuropathology-2025-6104. eCollection 2025 Jan.
6
Array tomography: trails to discovery.
Methods Microsc. 2024 Jul 17;1(1):9-17. doi: 10.1515/mim-2024-0001. eCollection 2024 Apr.
7
8
SmartEM: machine-learning guided electron microscopy.
bioRxiv. 2024 Jun 15:2023.10.05.561103. doi: 10.1101/2023.10.05.561103.
10
A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution.
Science. 2024 May 10;384(6696):eadk4858. doi: 10.1126/science.adk4858.

本文引用的文献

1
High-contrast en bloc staining of mouse whole-brain and human brain samples for EM-based connectomics.
Nat Methods. 2023 Jun;20(6):836-840. doi: 10.1038/s41592-023-01866-3. Epub 2023 May 8.
2
Connectomic comparison of mouse and human cortex.
Science. 2022 Jul 8;377(6602):eabo0924. doi: 10.1126/science.abo0924.
3
Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity.
Cell. 2022 Mar 17;185(6):1082-1100.e24. doi: 10.1016/j.cell.2022.01.023. Epub 2022 Feb 24.
4
Hyperosmotic stress induces epithelial-mesenchymal transition through rearrangements of focal adhesions in tubular epithelial cells.
PLoS One. 2021 Dec 21;16(12):e0261345. doi: 10.1371/journal.pone.0261345. eCollection 2021.
5
Connectomes across development reveal principles of brain maturation.
Nature. 2021 Aug;596(7871):257-261. doi: 10.1038/s41586-021-03778-8. Epub 2021 Aug 4.
6
Invaginating Structures in Synapses - Perspective.
Front Synaptic Neurosci. 2021 May 24;13:685052. doi: 10.3389/fnsyn.2021.685052. eCollection 2021.
7
Three-dimensional ultrastructure of the brain pericyte-endothelial interface.
J Cereb Blood Flow Metab. 2021 Sep;41(9):2185-2200. doi: 10.1177/0271678X211012836. Epub 2021 May 10.
8
Deep Brain Stimulation of the Substantia Nigra Pars Reticulata for Treatment-Resistant Schizophrenia: A Case Report.
Biol Psychiatry. 2021 Nov 15;90(10):e57-e59. doi: 10.1016/j.biopsych.2021.03.007. Epub 2021 Apr 24.
10
Circuit Reorganization Shapes the Developing Human Foveal Midget Connectome toward Single-Cone Resolution.
Neuron. 2020 Dec 9;108(5):905-918.e3. doi: 10.1016/j.neuron.2020.09.014. Epub 2020 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验