Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
Department of Biology, University of Crete, Heraklion, Greece.
EMBO J. 2023 May 2;42(9):e111885. doi: 10.15252/embj.2022111885. Epub 2023 Feb 6.
Cellular condensates can comprise membrane-less ribonucleoprotein assemblies with liquid-like properties. These cellular condensates influence various biological outcomes, but their liquidity hampers their isolation and characterization. Here, we investigated the composition of the condensates known as processing bodies (PBs) in the model plant Arabidopsis thaliana through a proximity-biotinylation proteomics approach. Using in situ protein-protein interaction approaches, genetics and high-resolution dynamic imaging, we show that processing bodies comprise networks that interface with membranes. Surprisingly, the conserved component of PBs, DECAPPING PROTEIN 1 (DCP1), can localize to unique plasma membrane subdomains including cell edges and vertices. We characterized these plasma membrane interfaces and discovered a developmental module that can control cell shape. This module is regulated by DCP1, independently from its role in decapping, and the actin-nucleating SCAR-WAVE complex, whereby the DCP1-SCAR-WAVE interaction confines and enhances actin nucleation. This study reveals an unexpected function for a conserved condensate at unique membrane interfaces.
细胞凝聚物可以包含具有液态特性的无膜核糖核蛋白组装体。这些细胞凝聚物影响着各种生物学结果,但它们的流动性阻碍了它们的分离和特性鉴定。在这里,我们通过一种邻近生物素化蛋白质组学方法研究了模型植物拟南芥中已知的凝聚物(处理体)的组成。通过原位蛋白质-蛋白质相互作用方法、遗传学和高分辨率动态成像,我们表明处理体由与膜相互作用的网络组成。令人惊讶的是,处理体的保守成分 DECAPPING PROTEIN 1 (DCP1) 可以定位于独特的质膜亚区,包括细胞边缘和顶点。我们对这些质膜界面进行了表征,并发现了一个可以控制细胞形状的发育模块。该模块受 DCP1 调控,与 DCP1 在去帽过程中的作用以及肌动蛋白成核 SCAR-WAVE 复合物独立相关,其中 DCP1-SCAR-WAVE 相互作用限制并增强了肌动蛋白的成核。这项研究揭示了一种保守凝聚物在独特膜界面的意想不到的功能。