Suppr超能文献

迈向基于注意力的学习,以利用多模态医学数据预测脑退化风险。

Toward attention-based learning to predict the risk of brain degeneration with multimodal medical data.

作者信息

Sun Xiaofei, Guo Weiwei, Shen Jing

机构信息

Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.

EchoX Technology Limited, Hong Kong, Hong Kong SAR, China.

出版信息

Front Neurosci. 2023 Jan 18;16:1043626. doi: 10.3389/fnins.2022.1043626. eCollection 2022.

Abstract

INTRODUCTION

Brain degeneration is commonly caused by some chronic diseases, such as Alzheimer's disease (AD) and diabetes mellitus (DM). The risk prediction of brain degeneration aims to forecast the situation of disease progression of patients in the near future based on their historical health records. It is beneficial for patients to make an accurate clinical diagnosis and early prevention of disease. Current risk predictions of brain degeneration mainly rely on single-modality medical data, such as Electronic Health Records (EHR) or magnetic resonance imaging (MRI). However, only leveraging EHR or MRI data for the pertinent and accurate prediction is insufficient because of single-modality information (e.g., pixel or volume information of image data or clinical context information of non-image data).

METHODS

Several deep learning-based methods have used multimodal data to predict the risks of specified diseases. However, most of them simply integrate different modalities in an early, intermediate, or late fusion structure and do not care about the intra-modal and intermodal dependencies. A lack of these dependencies would lead to sub-optimal prediction performance. Thus, we propose an encoder-decoder framework for better risk prediction of brain degeneration by using MRI and EHR. An encoder module is one of the key components and mainly focuses on feature extraction of input data. Specifically, we introduce an encoder module, which integrates intra-modal and inter-modal dependencies with the spatial-temporal attention and cross-attention mechanism. The corresponding decoder module is another key component and mainly parses the features from the encoder. In the decoder module, a disease-oriented module is used to extract the most relevant disease representation features. We take advantage of a multi-head attention module followed by a fully connected layer to produce the predicted results.

RESULTS

As different types of AD and DM influence the nature and severity of brain degeneration, we evaluate the proposed method for three-class prediction of AD and three-class prediction of DM. Our results show that the proposed method with integrated MRI and EHR data achieves an accuracy of 0.859 and 0.899 for the risk prediction of AD and DM, respectively.

DISCUSSION

The prediction performance is significantly better than the benchmarks, including MRI-only, EHR-only, and state-of-the-art multimodal fusion methods.

摘要

引言

脑退化通常由一些慢性疾病引起,如阿尔茨海默病(AD)和糖尿病(DM)。脑退化的风险预测旨在根据患者的历史健康记录预测其近期疾病进展情况。这有助于患者进行准确的临床诊断和疾病早期预防。目前脑退化的风险预测主要依赖单模态医学数据,如电子健康记录(EHR)或磁共振成像(MRI)。然而,由于单模态信息(如图像数据的像素或体积信息或非图像数据的临床背景信息),仅利用EHR或MRI数据进行相关且准确的预测是不够的。

方法

一些基于深度学习的方法已使用多模态数据来预测特定疾病的风险。然而,它们大多只是在早期、中期或晚期融合结构中简单地整合不同模态,而不考虑模态内和模态间的依赖性。缺乏这些依赖性会导致次优的预测性能。因此,我们提出了一种编码器 - 解码器框架,通过使用MRI和EHR来更好地预测脑退化风险。编码器模块是关键组件之一,主要专注于输入数据的特征提取。具体而言,我们引入了一个编码器模块,它通过时空注意力和交叉注意力机制整合模态内和模态间的依赖性。相应的解码器模块是另一个关键组件,主要解析来自编码器的特征。在解码器模块中,一个面向疾病的模块用于提取最相关的疾病表征特征。我们利用多头注意力模块,随后是一个全连接层来产生预测结果。

结果

由于不同类型的AD和DM会影响脑退化的性质和严重程度,我们评估了所提出的方法用于AD的三类预测和DM的三类预测。我们的结果表明,所提出的整合MRI和EHR数据的方法在AD和DM风险预测方面的准确率分别达到0.859和0.899。

讨论

预测性能明显优于基准,包括仅使用MRI、仅使用EHR以及最先进的多模态融合方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76be/9889549/3f11382f9d86/fnins-16-1043626-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验