Suppr超能文献

深度学习在糖尿病领域的应用:系统综述。

Deep Learning for Diabetes: A Systematic Review.

出版信息

IEEE J Biomed Health Inform. 2021 Jul;25(7):2744-2757. doi: 10.1109/JBHI.2020.3040225. Epub 2021 Jul 27.

Abstract

Diabetes is a chronic metabolic disorder that affects an estimated 463 million people worldwide. Aiming to improve the treatment of people with diabetes, digital health has been widely adopted in recent years and generated a huge amount of data that could be used for further management of this chronic disease. Taking advantage of this, approaches that use artificial intelligence and specifically deep learning, an emerging type of machine learning, have been widely adopted with promising results. In this paper, we present a comprehensive review of the applications of deep learning within the field of diabetes. We conducted a systematic literature search and identified three main areas that use this approach: diagnosis of diabetes, glucose management, and diagnosis of diabetes-related complications. The search resulted in the selection of 40 original research articles, of which we have summarized the key information about the employed learning models, development process, main outcomes, and baseline methods for performance evaluation. Among the analyzed literature, it is to be noted that various deep learning techniques and frameworks have achieved state-of-the-art performance in many diabetes-related tasks by outperforming conventional machine learning approaches. Meanwhile, we identify some limitations in the current literature, such as a lack of data availability and model interpretability. The rapid developments in deep learning and the increase in available data offer the possibility to meet these challenges in the near future and allow the widespread deployment of this technology in clinical settings.

摘要

糖尿病是一种慢性代谢紊乱疾病,全球约有 4.63 亿人受其影响。为了改善糖尿病患者的治疗效果,近年来数字健康已被广泛采用,并产生了大量可用于进一步管理这种慢性病的数据。利用这一点,人工智能,特别是深度学习这一新兴的机器学习方法,已被广泛采用,并取得了令人瞩目的成果。在本文中,我们对糖尿病领域中深度学习的应用进行了全面的综述。我们进行了系统的文献检索,确定了使用这种方法的三个主要领域:糖尿病诊断、血糖管理和糖尿病相关并发症的诊断。搜索结果共选择了 40 篇原始研究文章,我们总结了所采用的学习模型、开发过程、主要结果以及用于性能评估的基准方法的关键信息。在分析的文献中,值得注意的是,各种深度学习技术和框架通过超越传统机器学习方法,在许多与糖尿病相关的任务中实现了最先进的性能。同时,我们也发现当前文献中的一些局限性,例如数据可用性和模型可解释性的缺乏。深度学习的快速发展和可用数据的增加提供了在不久的将来应对这些挑战的可能性,并允许该技术在临床环境中广泛部署。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验