Colombo Monika, Bezinge Léonard, Rocha Tapia Andres, Shih Chih-Jen, de Mello Andrew J, Richards Daniel A
Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
Sens Diagn. 2022 Dec 1;2(1):100-110. doi: 10.1039/d2sd00197g. eCollection 2023 Jan 19.
Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This method relies on the automated detection of signal intensity at the test line, control line, and background, and employs statistical comparison of these values to predictively categorise tests as "positive", "negative", or "failed". We show that such a computational methodology can be transferred to a smartphone and detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result across a range of target antigen concentrations and fewer false negatives compared to human subjects at low antigen concentrations.
尽管侧向流动免疫分析(LFIA)方法简单,但它仍然是诊断工具库中的关键手段,尤其是在即时检测方面。然而,分析LFIA的方法仍然严重依赖不太理想的人工读数和基本的终点分析。这对检测准确性和检测时间都产生了负面影响,最终降低了诊断通量。在此,我们提出一种自动计算成像方法,用于实时并行处理和分析多个LFIA。该方法依赖于自动检测测试线、控制线和背景处的信号强度,并利用这些值的统计比较将测试预测分类为“阳性”、“阴性”或“失败”。我们表明,这种计算方法可以移植到智能手机上,并详细说明了如何利用LFIA的实时分析来缩短出结果时间并提高检测通量。我们将我们的方法与肉眼读数进行了比较,结果表明,在一系列目标抗原浓度下,我们的方法出结果时间更短,并且在低抗原浓度下与人类受试者相比假阴性更少。