London Centre for Nanotechnology, University College London, London, UK.
Africa Health Research Institute, Nelson R. Mandela Medical School, Durban, South Africa.
Nat Med. 2021 Jul;27(7):1165-1170. doi: 10.1038/s41591-021-01384-9. Epub 2021 Jun 17.
Although deep learning algorithms show increasing promise for disease diagnosis, their use with rapid diagnostic tests performed in the field has not been extensively tested. Here we use deep learning to classify images of rapid human immunodeficiency virus (HIV) tests acquired in rural South Africa. Using newly developed image capture protocols with the Samsung SM-P585 tablet, 60 fieldworkers routinely collected images of HIV lateral flow tests. From a library of 11,374 images, deep learning algorithms were trained to classify tests as positive or negative. A pilot field study of the algorithms deployed as a mobile application demonstrated high levels of sensitivity (97.8%) and specificity (100%) compared with traditional visual interpretation by humans-experienced nurses and newly trained community health worker staff-and reduced the number of false positives and false negatives. Our findings lay the foundations for a new paradigm of deep learning-enabled diagnostics in low- and middle-income countries, termed REASSURED diagnostics, an acronym for real-time connectivity, ease of specimen collection, affordable, sensitive, specific, user-friendly, rapid, equipment-free and deliverable. Such diagnostics have the potential to provide a platform for workforce training, quality assurance, decision support and mobile connectivity to inform disease control strategies, strengthen healthcare system efficiency and improve patient outcomes and outbreak management in emerging infections.
尽管深度学习算法在疾病诊断方面显示出越来越大的潜力,但它们在现场进行的快速诊断测试中的应用尚未得到广泛测试。在这里,我们使用深度学习来对在南非农村地区获得的快速人类免疫缺陷病毒 (HIV) 测试图像进行分类。使用三星 SM-P585 平板电脑新开发的图像采集协议,60 名现场工作人员定期采集 HIV 横向流动测试的图像。从 11374 张图像库中,深度学习算法被训练来对测试进行分类,分为阳性或阴性。作为移动应用程序部署的算法的试点现场研究表明,与传统的由经验丰富的护士和新培训的社区卫生工作者进行的人工视觉解释相比,算法具有很高的灵敏度(97.8%)和特异性(100%),并减少了假阳性和假阴性的数量。我们的发现为在低收入和中等收入国家实现深度学习支持的诊断开辟了新的范例,称为 REASSURED 诊断,该术语的首字母缩写代表实时连接、标本采集简便、价格合理、灵敏、特异、用户友好、快速、无设备和可交付使用。此类诊断有可能为劳动力培训、质量保证、决策支持和移动连接提供平台,以告知疾病控制策略,增强医疗保健系统的效率,并改善新发传染病患者的治疗效果和疫情管理。