Suppr超能文献

整合环境与卫星数据以估算新疆县级棉花产量。

Integrating environmental and satellite data to estimate county-level cotton yield in Xinjiang Province.

作者信息

Lang Ping, Zhang Lifu, Huang Changping, Chen Jiahua, Kang Xiaoyan, Zhang Ze, Tong Qingxi

机构信息

State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Front Plant Sci. 2023 Jan 18;13:1048479. doi: 10.3389/fpls.2022.1048479. eCollection 2022.

Abstract

Accurate and timely estimation of cotton yield over large areas is essential for precision agriculture, facilitating the operation of commodity markets and guiding agronomic management practices. Remote sensing (RS) and crop models are effective means to predict cotton yield in the field. The satellite vegetation indices (VIs) can describe crop yield variations over large areas but can't take the exact environmental impact into consideration. Climate variables (CVs), the result of the influence of spatial heterogeneity in large regions, can provide environmental information for better estimation of cotton yield. In this study, the most important VIs and CVs for estimating county-level cotton yield across Xinjiang Province were screened out. We found that the VIs of canopy structure and chlorophyll contents, and the CVs of moisture, were the most significant factors for cotton growth. For yield estimation, we utilized four approaches: least absolute shrinkage and selection operator regression (LASSO), support vector regression (SVR), random forest regression (RFR) and long short-term memory (LSTM). Due to its ability to capture temporal features over the long term, LSTM performed best, with an R of 0.76, root mean square error (RMSE) of 150 kg/ha and relative RMSE (rRMSE) of 8.67%; moreover, an additional 10% of the variance could be explained by adding CVs to the VIs. For the within-season yield estimation using LSTM, predictions made 2 months before harvest were the most accurate (R = 0.65, RMSE = 220 kg/ha, rRMSE = 15.97%). Our study demonstrated the feasibility of yield estimation and early prediction at the county level over large cotton cultivation areas by integrating satellite and environmental data.

摘要

准确及时地估算大面积棉花产量对于精准农业至关重要,有助于商品市场的运作并指导农艺管理实践。遥感(RS)和作物模型是预测田间棉花产量的有效手段。卫星植被指数(VIs)可以描述大面积作物产量变化,但无法考虑确切的环境影响。气候变量(CVs)是大区域空间异质性影响的结果,可为更好地估算棉花产量提供环境信息。在本研究中,筛选出了用于估算新疆县级棉花产量的最重要的植被指数和气候变量。我们发现,冠层结构和叶绿素含量的植被指数以及湿度的气候变量是棉花生长的最重要因素。对于产量估算,我们采用了四种方法:最小绝对收缩和选择算子回归(LASSO)、支持向量回归(SVR)、随机森林回归(RFR)和长短期记忆(LSTM)。由于其能够长期捕捉时间特征,LSTM表现最佳,R值为0.76,均方根误差(RMSE)为150 kg/公顷,相对RMSE(rRMSE)为8.67%;此外,将气候变量添加到植被指数中可额外解释10%的方差。对于使用LSTM进行季内产量估算,收获前2个月的预测最为准确(R = 0.65,RMSE = 220 kg/公顷,rRMSE = 15.97%)。我们的研究证明了通过整合卫星和环境数据在大面积棉花种植区进行县级产量估算和早期预测的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf4d/9889829/bf68ee5699b8/fpls-13-1048479-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验