Suppr超能文献

利用随机森林回归比较PlanetScope、哨兵-2和陆地卫星8数据在大豆产量估计中的田间变异性

Comparison of PlanetScope, Sentinel-2, and landsat 8 data in soybean yield estimation within-field variability with random forest regression.

作者信息

Amankulova Khilola, Farmonov Nizom, Akramova Parvina, Tursunov Ikrom, Mucsi László

机构信息

Department of Geoinformatics, Physical and Environmental Geography, University of Szeged, Egyetem Utca 2, Szeged 6722, Hungary.

Department of Hydrology and Ecology, "TIIAME" NRU Bukhara Institute of Natural Resources Management, Gazli Avenue 32, Bukhara, Uzbekistan.

出版信息

Heliyon. 2023 Jun 19;9(6):e17432. doi: 10.1016/j.heliyon.2023.e17432. eCollection 2023 Jun.

Abstract

Accurate timely and early-season crop yield estimation within the field variability is important for precision farming and sustainable management applications. Therefore, the ability to estimate the within-field variability of grain yield is crucial for ensuring food security worldwide, especially under climate change. Several Earth observation systems have thus been developed to monitor crops and predict yields. Despite this, new research is required to combine multiplatform data integration, advancements in satellite technologies, data processing, and the application of this discipline to agricultural practices. This study provides further developments in soybean yield estimation by comparing multisource satellite data from PlanetScope (PS), Sentinel-2 (S2), and Landsat 8 (L8) and introducing topographic and meteorological variables. Herein, a new method of combining soybean yield, global positioning systems, harvester data, climate, topographic variables, and remote sensing images has been demonstrated. Soybean yield shape points were obtained from a combine-harvester-installed GPS and yield monitoring system from seven fields over the 2021 season. The yield estimation models were trained and validated using random forest, and four vegetation indices were tested. The result showed that soybean yield can be accurately predicted at 3-, 10-, and 30-m resolutions with mean absolute error (MAE) value of 0.091 t/ha for PS, 0.118 t/ha for S2, and 0.120 t/ha for L8 data (root mean square error (RMSE) of 0.111, 0.076). The combination of the environmental data with the original bands provided further improvements and an accurate yield estimation model within the soybean yield variability with MAE of 0.082 t/ha for PS, 0.097 t/ha for S2, and 0.109 t/ha for L8 (RMSE of 0.094, 0.069, and 0.108 t/ha). The results showed that the optimal date to predict the soybean yield within the field scale was approximately 60 or 70 days before harvesting periods during the beginning bloom stage. The developed model can be applied for other crops and locations when suitable training yield data, which are critical for precision farming, are available.

摘要

在田间变异性范围内准确、及时地进行作物早期产量估计,对于精准农业和可持续管理应用非常重要。因此,估计田间粮食产量变异性的能力对于确保全球粮食安全至关重要,尤其是在气候变化的情况下。因此,已经开发了几种地球观测系统来监测作物并预测产量。尽管如此,仍需要新的研究来结合多平台数据整合、卫星技术进步、数据处理以及该学科在农业实践中的应用。本研究通过比较来自行星观测卫星(PS)、哨兵2号(S2)和陆地卫星8号(L8)的多源卫星数据并引入地形和气象变量,进一步发展了大豆产量估计方法。在此,展示了一种结合大豆产量、全球定位系统、收割机数据、气候、地形变量和遥感图像的新方法。大豆产量形状点来自2021年季节七个田地中安装在联合收割机上的GPS和产量监测系统。使用随机森林对产量估计模型进行训练和验证,并测试了四个植被指数。结果表明,在3米、10米和30米分辨率下可以准确预测大豆产量,PS数据的平均绝对误差(MAE)值为0.091吨/公顷,S2数据为0.118吨/公顷,L8数据为0.120吨/公顷(均方根误差(RMSE)为0.111、0.076)。环境数据与原始波段的组合进一步改进了模型,并在大豆产量变异性范围内提供了一个准确的产量估计模型,PS数据的MAE为0.082吨/公顷,S2数据为0.097吨/公顷,L8数据为0.109吨/公顷(RMSE分别为0.094、0.069和0.108吨/公顷)。结果表明,在田间尺度上预测大豆产量的最佳日期大约是在初花期收获期前60或70天。当有适合精准农业的关键训练产量数据时,所开发的模型可应用于其他作物和地点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f782/10319221/9e0a0f761bfe/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验