文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

2 型糖尿病及其合并症、阿尔茨海默病:使用机器学习识别关键 microRNA。

Type 2 Diabetes Mellitus and its comorbidity, Alzheimer's disease: Identifying critical microRNA using machine learning.

机构信息

Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

出版信息

Front Endocrinol (Lausanne). 2023 Jan 19;13:1084656. doi: 10.3389/fendo.2022.1084656. eCollection 2022.


DOI:10.3389/fendo.2022.1084656
PMID:36743910
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9893111/
Abstract

MicroRNAs (miRNAs) are critical regulators of gene expression in healthy and diseased states, and numerous studies have established their tremendous potential as a tool for improving the diagnosis of Type 2 Diabetes Mellitus (T2D) and its comorbidities. In this regard, we computationally identify novel top-ranked hub miRNAs that might be involved in T2D. We accomplish this two strategies: 1) by ranking miRNAs based on the number of T2D differentially expressed genes (DEGs) they target, and 2) using only the common DEGs between T2D and its comorbidity, Alzheimer's disease (AD) to predict and rank miRNA. Then classifier models are built using the DEGs targeted by each miRNA as features. Here, we show the T2D DEGs targeted by hsa-mir-1-3p, hsa-mir-16-5p, hsa-mir-124-3p, hsa-mir-34a-5p, hsa-let-7b-5p, hsa-mir-155-5p, hsa-mir-107, hsa-mir-27a-3p, hsa-mir-129-2-3p, and hsa-mir-146a-5p are capable of distinguishing T2D samples from the controls, which serves as a measure of confidence in the miRNAs' potential role in T2D progression. Moreover, for the second strategy, we show other critical miRNAs can be made apparent through the disease's comorbidities, and in this case, overall, the hsa-mir-103a-3p models work well for all the datasets, especially in T2D, while the hsa-mir-124-3p models achieved the best scores for the AD datasets. To the best of our knowledge, this is the first study that used predicted miRNAs to determine the features that can separate the diseased samples (T2D or AD) from the normal ones, instead of using conventional non-biology-based feature selection methods.

摘要

微小 RNA(miRNA)是健康和疾病状态下基因表达的关键调节剂,许多研究已经证实,miRNA 具有巨大的潜力,可以作为改善 2 型糖尿病(T2D)及其合并症诊断的工具。在这方面,我们通过计算方法识别可能与 T2D 相关的新型顶级枢纽 miRNA。我们通过两种策略来实现这一目标:1)根据 miRNA 靶向的 T2D 差异表达基因(DEG)数量对 miRNA 进行排名,2)仅使用 T2D 与其合并症阿尔茨海默病(AD)之间的共同 DEG 来预测和排名 miRNA。然后,使用每个 miRNA 靶向的 DEG 作为特征构建分类器模型。在这里,我们展示了 hsa-mir-1-3p、hsa-mir-16-5p、hsa-mir-124-3p、hsa-mir-34a-5p、hsa-let-7b-5p、hsa-mir-155-5p、hsa-mir-107、hsa-mir-27a-3p、hsa-mir-129-2-3p 和 hsa-mir-146a-5p 靶向的 T2D DEG 能够区分 T2D 样本与对照,这是 miRNA 在 T2D 进展中潜在作用的置信度的衡量标准。此外,对于第二种策略,我们通过疾病的合并症可以发现其他关键的 miRNA,在这种情况下,总体而言,hsa-mir-103a-3p 模型在所有数据集上都表现良好,尤其是在 T2D 中,而 hsa-mir-124-3p 模型在 AD 数据集上的得分最高。据我们所知,这是第一项使用预测 miRNA 来确定可以将患病样本(T2D 或 AD)与正常样本区分开来的特征的研究,而不是使用传统的非基于生物学的特征选择方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9232/9893111/9f72abed443d/fendo-13-1084656-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9232/9893111/9c76786be5e7/fendo-13-1084656-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9232/9893111/f0bdc955d085/fendo-13-1084656-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9232/9893111/449139e6b6c9/fendo-13-1084656-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9232/9893111/37e53e54272e/fendo-13-1084656-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9232/9893111/9f72abed443d/fendo-13-1084656-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9232/9893111/9c76786be5e7/fendo-13-1084656-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9232/9893111/f0bdc955d085/fendo-13-1084656-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9232/9893111/449139e6b6c9/fendo-13-1084656-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9232/9893111/37e53e54272e/fendo-13-1084656-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9232/9893111/9f72abed443d/fendo-13-1084656-g005.jpg

相似文献

[1]
Type 2 Diabetes Mellitus and its comorbidity, Alzheimer's disease: Identifying critical microRNA using machine learning.

Front Endocrinol (Lausanne). 2022

[2]
Exploiting machine learning models to identify novel Alzheimer's disease biomarkers and potential targets.

Sci Rep. 2023-3-27

[3]
Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients.

BMC Res Notes. 2013-11-26

[4]
From Euglycemia to Recent Onset of Type 2 Diabetes Mellitus: A Proof-of-Concept Study on Circulating microRNA Profiling Reveals Distinct, and Early microRNA Signatures.

Diagnostics (Basel). 2023-7-21

[5]
A data-driven biocomputing pipeline with meta-analysis on high throughput transcriptomics to identify genome-wide miRNA markers associated with type 2 diabetes.

Heliyon. 2022-2-2

[6]
A Systematic Review of MicroRNA Expression as Biomarker of Late-Onset Alzheimer's Disease.

Mol Neurobiol. 2019-6-25

[7]
Identification and validation of endogenous control miRNAs in plasma samples for normalization of qPCR data for Alzheimer's disease.

Alzheimers Res Ther. 2020-12-5

[8]
Unraveling the molecular pathogenesis of Type 2 Diabetes and its impact on female infertility: A bioinformatics and systems biology approach.

Comput Biol Med. 2024-9

[9]
Can Peripheral MicroRNA Expression Data Serve as Epigenomic (Upstream) Biomarkers of Alzheimer's Disease?

OMICS. 2016-8

[10]
Serum microRNA miR-501-3p as a potential biomarker related to the progression of Alzheimer's disease.

Acta Neuropathol Commun. 2017-1-31

引用本文的文献

[1]
Targeting macrophages and ion homeostasis in T2D: new genes and therapeutic pathways identified.

Front Immunol. 2025-8-14

[2]
Global Research Trends in Artificial Intelligence and Type 2 Diabetes Mellitus: A Bibliometric Perspective.

Cureus. 2025-7-16

[3]
Common miRNAs, Genes, and Regulatory Pathways in Alzheimer's Disease and Type 2 Diabetes Mellitus: An Integrative Analysis of Systematic Reviews, Bioinformatics and Data Mining.

J Neurochem. 2025-8

[4]
Identification of stable reference genes and differential miRNA expression in Sri Lankan type 2 diabetes mellitus patients: a cross-sectional study.

Front Endocrinol (Lausanne). 2025-6-12

[5]
Early detection of Alzheimer's disease progression stages using hybrid of CNN and transformer encoder models.

Sci Rep. 2025-5-14

[6]
Identification of Alzheimer's disease biomarkers and their immune function characterization.

Arch Med Sci. 2024-6-7

[7]
Systematic Identification of Mitochondrial Signatures in Alzheimer's Disease and Inflammatory Bowel Disease.

Mol Neurobiol. 2025-3-14

[8]
Novel Micro-Ribonucleic Acid Biomarkers for Early Detection of Type 2 Diabetes Mellitus and Associated Complications-A Literature Review.

Int J Mol Sci. 2025-1-17

[9]
Analyzing Diabetes Detection and Classification: A Bibliometric Review (2000-2023).

Sensors (Basel). 2024-8-19

[10]
Deciphering the molecular nexus between Omicron infection and acute kidney injury: a bioinformatics approach.

Front Mol Biosci. 2024-7-4

本文引用的文献

[1]
Role of miRNAs in Neurodegeneration: From Disease Cause to Tools of Biomarker Discovery and Therapeutics.

Genes (Basel). 2022-2-25

[2]
MiR-34a-5p and miR-452-5p: The Novel Regulators of Pancreatic Endocrine Dysfunction in Diabetic Zucker Rats?

Int J Med Sci. 2021

[3]
Gene Set Knowledge Discovery with Enrichr.

Curr Protoc. 2021-3

[4]
Expression and clinical significance of miR-1 and miR-133 in pre-diabetes.

Biomed Rep. 2021-3

[5]
Expression of miRNA-29 in Pancreatic β Cells Promotes Inflammation and Diabetes via TRAF3.

Cell Rep. 2021-1-5

[6]
miRNA Targets: From Prediction Tools to Experimental Validation.

Methods Protoc. 2020-12-24

[7]
Circulating miRNAs as a Predictive Biomarker of the Progression from Prediabetes to Diabetes: Outcomes of a 5-Year Prospective Observational Study.

J Clin Med. 2020-7-10

[8]
Identification of novel cerebrospinal fluid biomarker candidates for dementia with Lewy bodies: a proteomic approach.

Mol Neurodegener. 2020-6-18

[9]
miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology.

Nucleic Acids Res. 2020-7-2

[10]
HOTAIR drives autophagy in midbrain dopaminergic neurons in the substantia nigra compacta in a mouse model of Parkinson's disease by elevating NPTX2 miR-221-3p binding.

Aging (Albany NY). 2020-5-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索