Rueda-Hernández Rafael, Bossu Christen M, Smith Thomas B, Contina Andrea, Canales Del Castillo Ricardo, Ruegg Kristen, Hernández-Baños Blanca E
Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias Universidad Nacional Autónoma de México Mexico City Mexico.
Colorado State University Fort Collins Colorado USA.
Ecol Evol. 2023 Feb 1;13(2):e9769. doi: 10.1002/ece3.9769. eCollection 2023 Feb.
Technological advances in migratory tracking tools have revealed a remarkable diversity in migratory patterns. One such pattern is leapfrog migration, where individuals that breed further north migrate to locations further south. Here, we analyzed migration patterns in the Painted Bunting () using a genetic-based approach. We started by mapping patterns of genetic variation across geographic space (called a genoscape) using 386 individuals from 25 populations across the breeding range. We then genotyped an additional 230 samples from 31 migration stopover locations and 178 samples from 16 wintering locations to map patterns of migratory connectivity. Our analyses of genetic variation across the breeding range show the existence of four genetically distinct groups within the species: Eastern, Southwestern, Louisiana, and Central groups. Subsequent assignment of migrating and wintering birds to genetic groups illustrated that birds from the Central group migrated during the fall via western Mexico or southern Texas, spent the winter from northeastern Mexico to Panama, and migrated north via the Gulf Coast of Mexico. While Louisiana birds overlapped with Central birds on their spring migratory routes along the Gulf Coast, we found that Louisiana birds had a more restricted wintering distribution in the Yucatan Peninsula and Central America. Further estimation of the straight-line distance from the predicted breeding location to the wintering location revealed that individuals sampled at lower winter latitudes traveled to greater distances (i.e., the predicted breeding area was further north; > .001), confirming that these species exhibit a leapfrog migration pattern. Overall, these results demonstrate the utility of a genoscape-based approach for identifying range-wide patterns of migratory connectivity such as leapfrog migration with a high degree of clarity.
迁徙追踪工具的技术进步揭示了迁徙模式的显著多样性。其中一种模式是跨越式迁徙,即繁殖地更靠北的个体迁徙到更靠南的地方。在这里,我们使用基于基因的方法分析了彩鹀(Painted Bunting)的迁徙模式。我们首先利用来自繁殖范围内25个种群的386个个体,绘制了地理空间上的遗传变异模式(称为基因景观)。然后,我们对来自31个迁徙中途停歇地点的另外230个样本和来自16个越冬地点的178个样本进行基因分型,以绘制迁徙连通性模式。我们对整个繁殖范围内遗传变异的分析表明,该物种内存在四个遗传上不同的群体:东部、西南部、路易斯安那和中部群体。随后将迁徙和越冬鸟类分配到遗传群体的结果表明,中部群体的鸟类在秋季经墨西哥西部或得克萨斯州南部迁徙,在墨西哥东北部至巴拿马越冬,并经墨西哥湾沿岸向北迁徙。虽然路易斯安那州的鸟类在春季沿墨西哥湾沿岸的迁徙路线上与中部群体的鸟类重叠,但我们发现路易斯安那州的鸟类在尤卡坦半岛和中美洲的越冬分布更为有限。进一步估计从预测繁殖地点到越冬地点的直线距离发现,在较低冬季纬度采样的个体迁徙距离更远(即预测繁殖区域更靠北;P < 0.001),证实这些物种呈现跨越式迁徙模式。总体而言,这些结果证明了基于基因景观的方法在识别全范围迁徙连通性模式(如高度清晰的跨越式迁徙)方面的实用性。