Plasencia-Martínez Juana María, Pérez-Costa Rafael, Ballesta-Ruiz Mónica, María García-Santos José
Hospital General Universitario Morales Meseguer, Servicio de radiología, Avenida Marqués de los Vélez, s/n, 30008 Murcia, España.
Hospital General Universitario Morales Meseguer, Servicio de medicina de urgencias, Avenida Marqués de los Vélez, s/n, 30008 Murcia, España.
Radiologia. 2023 Jan 31. doi: 10.1016/j.rx.2022.11.012.
Rapid progression of COVID-19 pneumonia may put patients at risk of requiring ventilatory support, such as non-invasive mechanical ventilation or endotracheal intubation. Implementing tools that detect COVID-19 pneumonia can improve the patient's healthcare. We aim to evaluate the efficacy and efficiency of the artificial intelligence (AI) tool GE Healthcare's Thoracic Care Suite (featuring Lunit INSIGHT CXR, TCS) to predict the ventilatory support need based on pneumonic progression of COVID-19 on consecutive chest X-rays.
Outpatients with confirmed SARS-CoV-2 infection, with chest X-ray (CXR) findings probable or indeterminate for COVID-19 pneumonia, who required a second CXR due to unfavorable clinical course, were collected. The number of affected lung fields for the two CXRs was assessed using the AI tool.
One hundred fourteen patients (57.4 ± 14.2 years, 65 -57%- men) were retrospectively collected. Fifteen (13.2%) required ventilatory support. Progression of pneumonic extension ≥ 0.5 lung fields per day compared to pneumonia onset, detected using the TCS tool, increased the risk of requiring ventilatory support by 4-fold. Analyzing the AI output required 26 seconds of radiological time.
Applying the AI tool, Thoracic Care Suite, to CXR of patients with COVID-19 pneumonia allows us to anticipate ventilatory support requirements requiring less than half a minute.
新型冠状病毒肺炎(COVID-19)的快速进展可能使患者面临需要通气支持的风险,如无创机械通气或气管插管。采用能够检测COVID-19肺炎的工具可以改善患者的医疗护理。我们旨在评估通用电气医疗集团的人工智能(AI)工具胸部护理套件(Lunit INSIGHT CXR,TCS)基于COVID-19肺炎在连续胸部X光片上的肺部病变进展来预测通气支持需求的有效性和效率。
收集确诊感染严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的门诊患者,这些患者的胸部X光片(CXR)结果可能提示或无法确定为COVID-19肺炎,且因临床病程不佳需要进行第二次CXR检查。使用AI工具评估两张CXR上受影响肺野的数量。
回顾性收集了114例患者(年龄57.4±14.2岁,男性占65%-57%)。15例(13.2%)需要通气支持。使用TCS工具检测到与肺炎发病相比,肺部病变扩展每天≥0.5个肺野,使需要通气支持的风险增加了4倍。分析AI输出需要26秒的放射学时间。
将AI工具胸部护理套件应用于COVID-19肺炎患者的CXR,使我们能够在不到半分钟的时间内预测通气支持需求。