Suppr超能文献

基于深度学习的 CT 图像分析和电子健康记录在 COVID-19 患者预后中的应用的多中心研究。

A multi-center study of COVID-19 patient prognosis using deep learning-based CT image analysis and electronic health records.

机构信息

Department of Radiology, Massachusetts General Hospital, Boston, United States.

MGH & BWH Center for Clinical Data Science, Boston, United States.

出版信息

Eur J Radiol. 2021 Jun;139:109583. doi: 10.1016/j.ejrad.2021.109583. Epub 2021 Feb 5.

Abstract

PURPOSE

As of August 30th, there were in total 25.1 million confirmed cases and 845 thousand deaths caused by coronavirus disease of 2019 (COVID-19) worldwide. With overwhelming demands on medical resources, patient stratification based on their risks is essential. In this multi-center study, we built prognosis models to predict severity outcomes, combining patients' electronic health records (EHR), which included vital signs and laboratory data, with deep learning- and CT-based severity prediction.

METHOD

We first developed a CT segmentation network using datasets from multiple institutions worldwide. Two biomarkers were extracted from the CT images: total opacity ratio (TOR) and consolidation ratio (CR). After obtaining TOR and CR, further prognosis analysis was conducted on datasets from INSTITUTE-1, INSTITUTE-2 and INSTITUTE-3. For each data cohort, generalized linear model (GLM) was applied for prognosis prediction.

RESULTS

For the deep learning model, the correlation coefficient of the network prediction and manual segmentation was 0.755, 0.919, and 0.824 for the three cohorts, respectively. The AUC (95 % CI) of the final prognosis models was 0.85(0.77,0.92), 0.93(0.87,0.98), and 0.86(0.75,0.94) for INSTITUTE-1, INSTITUTE-2 and INSTITUTE-3 cohorts, respectively. Either TOR or CR exist in all three final prognosis models. Age, white blood cell (WBC), and platelet (PLT) were chosen predictors in two cohorts. Oxygen saturation (SpO2) was a chosen predictor in one cohort.

CONCLUSION

The developed deep learning method can segment lung infection regions. Prognosis results indicated that age, SpO2, CT biomarkers, PLT, and WBC were the most important prognostic predictors of COVID-19 in our prognosis model.

摘要

目的

截至 2023 年 8 月 30 日,全球范围内共有 2510 万例确诊病例和 84.5 万例 2019 年冠状病毒病(COVID-19)死亡病例。由于对医疗资源的巨大需求,根据患者的风险对患者进行分层至关重要。在这项多中心研究中,我们结合患者的电子健康记录(EHR),包括生命体征和实验室数据,以及基于深度学习和 CT 的严重程度预测,构建了预测严重程度结局的预后模型。

方法

我们首先使用来自多个全球机构的数据集开发了一个 CT 分割网络。从 CT 图像中提取出两个生物标志物:总不透明度比(TOR)和实变比(CR)。获得 TOR 和 CR 后,我们对 INSTITUTE-1、INSTITUTE-2 和 INSTITUTE-3 数据集进行了进一步的预后分析。对于每个数据队列,我们都应用广义线性模型(GLM)进行预后预测。

结果

对于深度学习模型,网络预测与手动分割的相关系数在三个队列中分别为 0.755、0.919 和 0.824。最终预后模型的 AUC(95%CI)在 INSTITUTE-1、INSTITUTE-2 和 INSTITUTE-3 队列中分别为 0.85(0.77,0.92)、0.93(0.87,0.98)和 0.86(0.75,0.94)。在所有三个最终预后模型中都存在 TOR 或 CR。年龄、白细胞(WBC)和血小板(PLT)是两个队列中的预测因子。血氧饱和度(SpO2)是一个队列中的预测因子。

结论

所开发的深度学习方法可以分割肺部感染区域。预后结果表明,年龄、SpO2、CT 生物标志物、PLT 和 WBC 是我们预后模型中 COVID-19 最重要的预后预测因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1098/7863774/f3e9d5a93e8c/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验