Suppr超能文献

利用胸部X光片上的深度学习预测COVID-19患者对重症监护的需求。

Predicting intensive care need for COVID-19 patients using deep learning on chest radiography.

作者信息

Li Hui, Drukker Karen, Hu Qiyuan, Whitney Heather M, Fuhrman Jordan D, Giger Maryellen L

机构信息

The University of Chicago, Department of Radiology, Chicago, Illinois, United States.

出版信息

J Med Imaging (Bellingham). 2023 Jul;10(4):044504. doi: 10.1117/1.JMI.10.4.044504. Epub 2023 Aug 21.

Abstract

PURPOSE

Image-based prediction of coronavirus disease 2019 (COVID-19) severity and resource needs can be an important means to address the COVID-19 pandemic. In this study, we propose an artificial intelligence/machine learning (AI/ML) COVID-19 prognosis method to predict patients' needs for intensive care by analyzing chest X-ray radiography (CXR) images using deep learning.

APPROACH

The dataset consisted of 8357 CXR exams from 5046 COVID-19-positive patients as confirmed by reverse transcription polymerase chain reaction (RT-PCR) tests for the SARS-CoV-2 virus with a training/validation/test split of 64%/16%/20% on a by patient level. Our model involved a DenseNet121 network with a sequential transfer learning technique employed to train on a sequence of gradually more specific and complex tasks: (1) fine-tuning a model pretrained on ImageNet using a previously established CXR dataset with a broad spectrum of pathologies; (2) refining on another established dataset to detect pneumonia; and (3) fine-tuning using our in-house training/validation datasets to predict patients' needs for intensive care within 24, 48, 72, and 96 h following the CXR exams. The classification performances were evaluated on our independent test set (CXR exams of 1048 patients) using the area under the receiver operating characteristic curve (AUC) as the figure of merit in the task of distinguishing between those COVID-19-positive patients who required intensive care following the imaging exam and those who did not.

RESULTS

Our proposed AI/ML model achieved an AUC (95% confidence interval) of 0.78 (0.74, 0.81) when predicting the need for intensive care 24 h in advance, and at least 0.76 (0.73, 0.80) for 48 h or more in advance using predictions based on the AI prognostic marker derived from CXR images.

CONCLUSIONS

This AI/ML prediction model for patients' needs for intensive care has the potential to support both clinical decision-making and resource management.

摘要

目的

基于图像预测2019冠状病毒病(COVID-19)的严重程度和资源需求可能是应对COVID-19大流行的重要手段。在本研究中,我们提出一种人工智能/机器学习(AI/ML)COVID-19预后方法,通过使用深度学习分析胸部X线摄影(CXR)图像来预测患者的重症监护需求。

方法

数据集包括来自5046例COVID-19阳性患者的8357次CXR检查,这些患者经严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒的逆转录聚合酶链反应(RT-PCR)检测确诊,在患者层面上训练/验证/测试的划分比例为64%/16%/20%。我们的模型采用DenseNet121网络,并运用顺序迁移学习技术在一系列逐渐更具体和复杂的任务上进行训练:(1)使用先前建立的具有广泛病理类型的CXR数据集对在ImageNet上预训练的模型进行微调;(2)在另一个已建立的数据集上进行优化以检测肺炎;(3)使用我们的内部训练/验证数据集进行微调,以预测患者在CXR检查后24、48、72和96小时内的重症监护需求。在我们的独立测试集(1048例患者的CXR检查)上,使用受试者操作特征曲线下面积(AUC)作为区分成像检查后需要重症监护的COVID-19阳性患者和不需要的患者这一任务的评估指标,来评估分类性能。

结果

我们提出的AI/ML模型在提前24小时预测重症监护需求时,AUC(95%置信区间)达到0.78(0.74,0.81),而基于CXR图像得出的AI预后标志物进行预测时,提前48小时或更长时间预测的AUC至少为0.76(0.73,0.80)。

结论

这种用于预测患者重症监护需求的AI/ML预测模型有潜力支持临床决策和资源管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb16/10440543/b07158b924a8/JMI-010-044504-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验