Suppr超能文献

从 Rasch 分析中解读结果 2. 高级模型应用和数据-模型拟合评估。

Interpreting results from Rasch analysis 2. Advanced model applications and the data-model fit assessment.

机构信息

Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.

IRCCS, Istituto Auxologico Italiano, Department of Neurorehabilitation Sciences, Ospedale San Luca, Milan, Italy.

出版信息

Disabil Rehabil. 2024 Feb;46(3):604-617. doi: 10.1080/09638288.2023.2169772. Epub 2023 Feb 6.

Abstract

The present paper presents developments and advanced practical applications of Rasch's theory and statistical analysis to construct questionnaires for measuring a person's traits. The flaws of questionnaires providing raw scores are well known. Scores only approximate objective, linear measures. The Rasch Analysis allows you to turn raw scores into measures with an error estimate, satisfying fundamental measurement axioms (e.g., unidimensionality, linearity, generalizability). A previous companion article illustrated the most frequent graphic and numeric representations of results obtained through Rasch Analysis. A more advanced description of the method is presented here. Measures obtained through Rasch Analysis may foster the advancement of the scientific assessment of behaviours, perceptions, skills, attitudes, and knowledge so frequently faced in Physical and Rehabilitation Medicine, not less than in social and educational sciences. Furthermore, suggestions are given on interpreting and managing the inevitable discrepancies between observed scores and ideal measures (data-model "misfit"). Finally, twelve practical take-home messages for appraising published results are provided.Implications for rehabilitationThe current work is the second of two papers addressed to rehabilitation clinicians looking for an in-depth introduction to the Rasch analysis.The first paper illustrates the most common results reported in published papers presenting the Rasch analysis of questionnaires.The present article illustrates more advanced applications of the Rasch analysis, also frequently found in publications.Twelve take-home messages are given for a critical appraisal of the results.

摘要

本文介绍了 Rasch 理论和统计分析在构建用于测量个体特质的问卷方面的发展和高级实际应用。众所周知,提供原始分数的问卷存在缺陷。分数仅近似于客观的线性度量。Rasch 分析允许您将原始分数转换为具有误差估计的度量值,满足基本的度量公理(例如,单维性、线性、可推广性)。之前的一篇配套文章展示了通过 Rasch 分析获得的最常见的图形和数值结果表示。这里提供了对该方法的更高级描述。通过 Rasch 分析获得的度量值可以促进行为、感知、技能、态度和知识等在物理康复医学中经常面临的科学评估的进步,不亚于社会和教育科学。此外,还就如何解释和处理观察到的分数与理想度量值之间不可避免的差异(数据-模型“不匹配”)提出了建议。最后,提供了评估已发表结果的十二条实用建议。

康复的意义

本工作是两篇论文中的第二篇,旨在为康复临床医生提供深入介绍 Rasch 分析。第一篇文章说明了在发表的介绍 Rasch 分析问卷的论文中最常见的报告结果。本文展示了 Rasch 分析的更高级应用,这些应用也经常出现在出版物中。给出了十二条重要的信息,用于对结果进行批判性评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验