Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058Erlangen, Germany.
Institute of Physical Chemistry, Justus Liebig University Giessen, DE-35392Giessen, Germany.
J Phys Chem Lett. 2023 Feb 16;14(6):1470-1477. doi: 10.1021/acs.jpclett.2c03732. Epub 2023 Feb 6.
Molecular solar-thermal (MOST) systems combine solar energy conversion, storage, and release within one single molecule. To release the energy, different approaches are applicable, e.g., the electrochemical and the catalytic pathways. While the electrochemical pathway requires catalytically inert electrode materials, the catalytic pathway requires active and selective catalysts. In this work, we studied the catalytic activity and selectivity of graphite(0001), Pt(111), and Au(111) surfaces for the energy release from the MOST system 3-cyanophenylazothiophene along with its adsorption properties. In our study, we combine in situ photochemical IR spectroscopy and density functional theory (DFT). Graphite(0001) is catalytically inactive, shows the weakest reactant-surface interaction, and therefore is ideally suitable for electrochemical triggering. On Pt(111), we observe strong reactant-surface interactions along with moderate catalytic activity and partial decomposition, which limit the applicability of this material. On Au(111), we observe high catalytic activity and high selectivity (>99%). We assign these catalytic properties to the moderate reactant surface interaction, which prevents decomposition but facilitates energy release via a singlet-triplet mechanism.
分子太阳能热(MOST)系统将太阳能的转换、存储和释放集成在一个单一的分子中。为了释放能量,可以采用不同的方法,例如电化学途径和催化途径。虽然电化学途径需要催化惰性的电极材料,但催化途径需要活性和选择性的催化剂。在这项工作中,我们研究了石墨(0001)、Pt(111)和 Au(111)表面对于从 MOST 系统 3-氰基苯基偶氮噻吩释放能量的催化活性和选择性,以及它们的吸附特性。在我们的研究中,我们结合了原位光化学红外光谱和密度泛函理论(DFT)。石墨(0001)是催化惰性的,表现出最弱的反应物-表面相互作用,因此非常适合电化学触发。在 Pt(111)上,我们观察到反应物-表面相互作用强烈,同时具有适度的催化活性和部分分解,这限制了这种材料的适用性。在 Au(111)上,我们观察到高催化活性和高选择性(>99%)。我们将这些催化性质归因于适度的反应物表面相互作用,它可以防止分解,但通过单重态-三重态机制促进能量释放。