Suppr超能文献

基于基因互作图的邻接连接神经网络的基因表达预测。

Gene expression prediction based on neighbour connection neural network utilizing gene interaction graphs.

机构信息

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China.

Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing, China.

出版信息

PLoS One. 2023 Feb 6;18(2):e0281286. doi: 10.1371/journal.pone.0281286. eCollection 2023.

Abstract

Having observed that gene expressions have a correlation, the Library of Integrated Network-based Cell-Signature program selects 1000 landmark genes to predict the remaining gene expression value. Further works have improved the prediction result by using deep learning models. However, these models ignore the latent structure of genes, limiting the accuracy of the experimental results. We therefore propose a novel neural network named Neighbour Connection Neural Network(NCNN) to utilize the gene interaction graph information. Comparing to the popular GCN model, our model incorperates the graph information in a better manner. We validate our model under two different settings and show that our model promotes prediction accuracy comparing to the other models.

摘要

观察到基因表达之间存在相关性后,基于整合网络的细胞特征程序库选择了 1000 个标志性基因来预测其余基因的表达值。进一步的工作通过使用深度学习模型改进了预测结果。然而,这些模型忽略了基因的潜在结构,限制了实验结果的准确性。因此,我们提出了一种名为邻居连接神经网络(NCNN)的新型神经网络,以利用基因交互图信息。与流行的 GCN 模型相比,我们的模型更好地整合了图信息。我们在两种不同的设置下验证了我们的模型,并表明与其他模型相比,我们的模型提高了预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f317/9901809/ea6173d82ee3/pone.0281286.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验