Suppr超能文献

条件生成对抗网络用于基因表达推断。

Conditional generative adversarial network for gene expression inference.

机构信息

Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Bioinformatics. 2018 Sep 1;34(17):i603-i611. doi: 10.1093/bioinformatics/bty563.

Abstract

MOTIVATION

The rapid progress of gene expression profiling has facilitated the prosperity of recent biological studies in various fields, where gene expression data characterizes various cell conditions and regulatory mechanisms under different experimental circumstances. Despite the widespread application of gene expression profiling and advances in high-throughput technologies, profiling in genome-wide level is still expensive and difficult. Previous studies found that high correlation exists in the expression pattern of different genes, such that a small subset of genes can be informative to approximately describe the entire transcriptome. In the Library of Integrated Network-based Cell-Signature program, a set of ∼1000 landmark genes have been identified that contain ∼80% information of the whole genome and can be used to predict the expression of remaining genes. For a cost-effective profiling strategy, traditional methods measure the profiles of landmark genes and then infer the expression of other target genes via linear models. However, linear models do not have the capacity to capture the non-linear associations in gene regulatory networks.

RESULTS

As a flexible model with high representative power, deep learning models provide an alternate to interpret the complex relation among genes. In this paper, we propose a deep learning architecture for the inference of target gene expression profiles. We construct a novel conditional generative adversarial network by incorporating both the adversarial and ℓ1-norm loss terms in our model. Unlike the smooth and blurry predictions resulted by mean squared error objective, the coupled adversarial and ℓ1-norm loss function leads to more accurate and sharp predictions. We validate our method under two different settings and find consistent and significant improvements over all the comparing methods.

摘要

动机

基因表达谱的快速发展促进了各个领域的生物研究的繁荣,基因表达数据描述了不同实验条件下各种细胞状态和调控机制。尽管基因表达谱的应用广泛且高通量技术不断进步,但在全基因组水平上进行分析仍然昂贵且困难。先前的研究发现,不同基因的表达模式之间存在高度相关性,以至于一小部分基因就可以提供有关整个转录组的信息。在基于网络的细胞特征综合库计划中,已经确定了一组约 1000 个标志性基因,它们包含约 80%的基因组信息,可以用于预测其他目标基因的表达。对于一种具有成本效益的分析策略,传统方法测量标志性基因的表达谱,然后通过线性模型推断其他目标基因的表达。然而,线性模型不具备捕捉基因调控网络中非线性关联的能力。

结果

深度学习模型作为一种具有高代表性能力的灵活模型,为解释基因之间的复杂关系提供了另一种选择。在本文中,我们提出了一种用于推断目标基因表达谱的深度学习架构。我们通过在模型中同时纳入对抗和 ℓ1-范数损失项,构建了一种新颖的条件生成对抗网络。与均方误差目标产生的平滑和模糊预测不同,耦合的对抗和 ℓ1-范数损失函数导致更准确和尖锐的预测。我们在两种不同的设置下验证了我们的方法,并发现与所有比较方法相比都有一致且显著的改进。

相似文献

1
Conditional generative adversarial network for gene expression inference.
Bioinformatics. 2018 Sep 1;34(17):i603-i611. doi: 10.1093/bioinformatics/bty563.
2
Deep Large-Scale Multitask Learning Network for Gene Expression Inference.
J Comput Biol. 2021 May;28(5):485-500. doi: 10.1089/cmb.2020.0438.
3
Gene expression inference with deep learning.
Bioinformatics. 2016 Jun 15;32(12):1832-9. doi: 10.1093/bioinformatics/btw074. Epub 2016 Feb 11.
4
D-GPM: A Deep Learning Method for Gene Promoter Methylation Inference.
Genes (Basel). 2019 Oct 14;10(10):807. doi: 10.3390/genes10100807.
5
Mining influential genes based on deep learning.
BMC Bioinformatics. 2021 Jan 22;22(1):27. doi: 10.1186/s12859-021-03972-5.
6
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
BMC Syst Biol. 2018 Dec 14;12(Suppl 7):115. doi: 10.1186/s12918-018-0635-1.
7
Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods.
Methods. 2014 Jun 1;67(3):294-303. doi: 10.1016/j.ymeth.2014.03.006. Epub 2014 Mar 17.
8
Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
Magn Reson Med. 2019 Sep;82(3):901-910. doi: 10.1002/mrm.27772. Epub 2019 Apr 22.
9
On transformative adaptive activation functions in neural networks for gene expression inference.
PLoS One. 2021 Jan 14;16(1):e0243915. doi: 10.1371/journal.pone.0243915. eCollection 2021.
10
Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.
Genome Res. 2012 Jul;22(7):1334-49. doi: 10.1101/gr.127191.111. Epub 2012 Mar 28.

引用本文的文献

1
Diffusion-based generation of gene regulatory networks from scRNA-seq data with DigNet.
Genome Res. 2025 Feb 14;35(2):340-354. doi: 10.1101/gr.279551.124.
2
HE2Gene: image-to-RNA translation via multi-task learning for spatial transcriptomics data.
Bioinformatics. 2024 Jun 3;40(6). doi: 10.1093/bioinformatics/btae343.
4
Gene expression prediction based on neighbour connection neural network utilizing gene interaction graphs.
PLoS One. 2023 Feb 6;18(2):e0281286. doi: 10.1371/journal.pone.0281286. eCollection 2023.
5
Trends and patterns in cancer nanotechnology research: A survey of NCI's caNanoLab and nanotechnology characterization laboratory.
Adv Drug Deliv Rev. 2022 Dec;191:114591. doi: 10.1016/j.addr.2022.114591. Epub 2022 Nov 1.
6
Transforming L1000 profiles to RNA-seq-like profiles with deep learning.
BMC Bioinformatics. 2022 Sep 13;23(1):374. doi: 10.1186/s12859-022-04895-5.
7
Driving innovation for rare skin cancers: utilizing common tumours and machine learning to predict immune checkpoint inhibitor response.
Immunooncol Technol. 2019 Nov 27;4:1-7. doi: 10.1016/j.iotech.2019.11.002. eCollection 2019 Dec.
8
Generating hard-to-obtain information from easy-to-obtain information: Applications in drug discovery and clinical inference.
Patterns (N Y). 2021 Jun 17;2(7):100288. doi: 10.1016/j.patter.2021.100288. eCollection 2021 Jul 9.
10
Meta-learning with Latent Space Clustering in Generative Adversarial Network for Speaker Diarization.
IEEE/ACM Trans Audio Speech Lang Process. 2021;29:1204-1219. doi: 10.1109/taslp.2021.3061885. Epub 2021 Feb 26.

本文引用的文献

3
CellMapper: rapid and accurate inference of gene expression in difficult-to-isolate cell types.
Genome Biol. 2016 Sep 29;17(1):201. doi: 10.1186/s13059-016-1062-5.
4
Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts.
Genome Biol. 2016 May 26;17(1):112. doi: 10.1186/s13059-016-0970-8.
6
Gene expression inference with deep learning.
Bioinformatics. 2016 Jun 15;32(12):1832-9. doi: 10.1093/bioinformatics/btw074. Epub 2016 Feb 11.
8
Minimum Information about a Biosynthetic Gene cluster.
Nat Chem Biol. 2015 Sep;11(9):625-31. doi: 10.1038/nchembio.1890.
10
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation.
PLoS One. 2015 Jul 10;10(7):e0130140. doi: 10.1371/journal.pone.0130140. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验