Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China.
Department of Intensive Care Unit, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China.
Adv Sci (Weinh). 2024 Apr;11(15):e2306031. doi: 10.1002/advs.202306031. Epub 2024 Feb 11.
Overproduction of reactive oxygen species (ROS), metal ion accumulation, and tricarboxylic acid cycle collapse are crucial factors in mitochondria-mediated cell death. However, the highly adaptive nature and damage-repair capabilities of malignant tumors strongly limit the efficacy of treatments based on a single treatment mode. To address this challenge, a self-reinforced bimetallic Mito-Jammer is developed by incorporating doxorubicin (DOX) and calcium peroxide (CaO) into hyaluronic acid (HA) -modified metal-organic frameworks (MOF). After cellular, Mito-Jammer dissociates into CaO and Cu in the tumor microenvironment. The exposed CaO further yields hydrogen peroxide (HO) and Ca in a weakly acidic environment to strengthen the Cu-based Fenton-like reaction. Furthermore, the combination of chemodynamic therapy and Ca overload exacerbates ROS storms and mitochondrial damage, resulting in the downregulation of intracellular adenosine triphosphate (ATP) levels and blocking of Cu-ATPase to sensitize cuproptosis. This multilevel interaction strategy also activates robust immunogenic cell death and suppresses tumor metastasis simultaneously. This study presents a multivariate model for revolutionizing mitochondria damage, relying on the continuous retention of bimetallic ions to boost cuproptosis/immunotherapy in cancer.
活性氧(ROS)的过度产生、金属离子的积累和三羧酸循环的崩溃是线粒体介导的细胞死亡的关键因素。然而,恶性肿瘤高度适应和损伤修复的特性极大地限制了基于单一治疗模式的治疗效果。为了解决这一挑战,通过将阿霉素(DOX)和过氧化钙(CaO)掺入透明质酸(HA)修饰的金属有机骨架(MOF)中,开发了自增强的双金属 Mito-Jammer。在细胞内,Mito-Jammer 在肿瘤微环境中解离为 CaO 和 Cu。暴露的 CaO 在弱酸性环境中进一步产生过氧化氢(HO)和 Ca,以增强基于 Cu 的类芬顿反应。此外,化学动力学治疗和钙超载的联合作用加剧了 ROS 风暴和线粒体损伤,导致细胞内三磷酸腺苷(ATP)水平下调,并阻断 Cu-ATPase 以敏化铜死亡。这种多层次的相互作用策略还同时激活了强烈的免疫原性细胞死亡并抑制了肿瘤转移。本研究提出了一种颠覆线粒体损伤的多变量模型,依赖于双金属离子的持续保留来增强癌症中的铜死亡/免疫治疗。
ACS Appl Mater Interfaces. 2024-4-17
Front Bioeng Biotechnol. 2023-5-24
ACS Appl Mater Interfaces. 2024-10-30
Cancer Pathog Ther. 2024-7-27
Cancer Drug Resist. 2025-3-26
ACS Nano. 2023-10-24
Adv Healthc Mater. 2023-11
Exploration (Beijing). 2021-9-1
Chem Commun (Camb). 2023-6-8
Autophagy. 2023-8