Suppr超能文献

基于自动乳腺超声(ABUS)的放射组学列线图:一种用于预测早期乳腺癌患者腋窝淋巴结肿瘤负担的个体化工具。

Automated Breast Ultrasound (ABUS)-based radiomics nomogram: an individualized tool for predicting axillary lymph node tumor burden in patients with early breast cancer.

机构信息

Department of Ultrasound, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China.

出版信息

BMC Cancer. 2023 Apr 13;23(1):340. doi: 10.1186/s12885-023-10743-3.

Abstract

OBJECTIVES

Preoperative evaluation of axillary lymph node (ALN) status is an essential part of deciding the appropriate treatment. According to ACOSOG Z0011 trials, the new goal of the ALN status evaluation is tumor burden (low burden, < 3 positive ALNs; high burden, ≥ 3 positive ALNs), instead of metastasis or non-metastasis. We aimed to develop a radiomics nomogram integrating clinicopathologic features, ABUS imaging features and radiomics features from ABUS for predicting ALN tumor burden in early breast cancer.

METHODS

A total of 310 patients with breast cancer were enrolled. Radiomics score was generated from the ABUS images. Multivariate logistic regression analysis was used to develop the predicting model, we incorporated the radiomics score, ABUS imaging features and clinicopathologic features, and this was presented with a radiomics nomogram. Besides, we separately constructed an ABUS model to analyze the performance of ABUS imaging features in predicting ALN tumor burden. The performance of the models was assessed through discrimination, calibration curve, and decision curve.

RESULTS

The radiomics score, which consisted of 13 selected features, showed moderate discriminative ability (AUC 0.794 and 0.789 in the training and test sets). The ABUS model, comprising diameter, hyperechoic halo, and retraction phenomenon, showed moderate predictive ability (AUC 0.772 and 0.736 in the training and test sets). The ABUS radiomics nomogram, integrating radiomics score with retraction phenomenon and US-reported ALN status, showed an accurate agreement between ALN tumor burden and pathological verification (AUC 0.876 and 0.851 in the training and test sets). The decision curves showed that ABUS radiomics nomogram was clinically useful and more excellent than US-reported ALN status by experienced radiologists.

CONCLUSIONS

The ABUS radiomics nomogram, with non-invasive, individualized and precise assessment, may assist clinicians to determine the optimal treatment strategy and avoid overtreatment.

摘要

目的

腋窝淋巴结(ALN)状态的术前评估是决定适当治疗的重要组成部分。根据 ACOSOG Z0011 试验,ALN 状态评估的新目标是肿瘤负担(低负担,<3 个阳性 ALN;高负担,≥3 个阳性 ALN),而不是转移或非转移。我们旨在开发一种结合临床病理特征、ABUS 成像特征和 ABUS 放射组学特征的放射组学列线图,以预测早期乳腺癌的 ALN 肿瘤负担。

方法

共纳入 310 例乳腺癌患者。从 ABUS 图像中生成放射组学评分。采用多变量逻辑回归分析建立预测模型,我们将放射组学评分、ABUS 成像特征和临床病理特征结合起来,形成放射组学列线图。此外,我们分别构建了 ABUS 模型来分析 ABUS 成像特征在预测 ALN 肿瘤负担方面的性能。通过判别、校准曲线和决策曲线评估模型的性能。

结果

由 13 个选定特征组成的放射组学评分显示出中等的判别能力(在训练和测试集中的 AUC 分别为 0.794 和 0.789)。ABUS 模型,包括直径、高回声晕和回缩现象,显示出中等的预测能力(在训练和测试集中的 AUC 分别为 0.772 和 0.736)。整合放射组学评分、回缩现象和超声报告的 ALN 状态的 ABUS 放射组学列线图,在 ALN 肿瘤负担和病理验证之间显示出准确的一致性(在训练和测试集中的 AUC 分别为 0.876 和 0.851)。决策曲线显示 ABUS 放射组学列线图具有临床实用性,优于经验丰富的放射科医生的超声报告的 ALN 状态。

结论

ABUS 放射组学列线图具有非侵入性、个体化和精确评估,可以帮助临床医生确定最佳治疗策略,避免过度治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/985c/10100322/f8fafac9b977/12885_2023_10743_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验