Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
Acta Pharmacol Sin. 2023 Aug;44(8):1612-1624. doi: 10.1038/s41401-023-01059-w. Epub 2023 Feb 6.
Suprachiasmatic nucleus (SCN) in mammals functions as the master circadian pacemaker that coordinates temporal organization of physiological processes with the environmental light/dark cycles. But the causative links between SCN and cardiovascular diseases, specifically the reparative responses after myocardial infarction (MI), remain largely unknown. In this study we disrupted mouse SCN function to investigate the role of SCN in cardiac dysfunction post-MI. Bilateral ablation of the SCN (SCNx) was generated in mice by electrical lesion; myocardial infarction was induced via ligation of the mid-left anterior descending artery (LAD); cardiac function was assessed using echocardiography. We showed that SCN ablation significantly alleviated MI-induced cardiac dysfunction and cardiac fibrosis, and promoted angiogenesis. RNA sequencing revealed differentially expressed genes in the heart of SCNx mice from D0 to D3 post-MI, which were functionally associated with the inflammatory response and cytokine-cytokine receptor interaction. Notably, the expression levels of insulin-like growth factor 2 (Igf2) in the heart and serum IGF2 concentration were significantly elevated in SCNx mice on D3 post-MI. Stimulation of murine peritoneal macrophages in vitro with serum isolated from SCNx mice on D3 post-MI accelerated the transition of anti-inflammatory macrophages, while antibody-mediated neutralization of IGF2 receptor blocked the macrophage transition toward the anti-inflammatory phenotype in vitro as well as the corresponding cardioprotective effects observed in SCNx mice post-MI. In addition, disruption of mouse SCN function by exposure to a desynchronizing condition (constant light) caused similar protective effects accompanied by elevated IGF2 expression on D3 post-MI. Finally, mice deficient in the circadian core clock genes (Ckm-cre; Bmal1 mice or Per1/2 double knockout) did not lead to increased serum IGF2 concentration and showed no protective roles in post-MI, suggesting that the cardioprotective effect observed in this study was mediated particularly by the SCN itself, but not by self-sustained molecular clock. Together, we demonstrate that inhibition of SCN function promotes Igf2 expression, which leads to macrophage transition and improves cardiac repair post-MI.
哺乳动物的视交叉上核(SCN)作为主生物钟起搏器,协调生理过程与环境光/暗周期的时间组织。但是 SCN 与心血管疾病之间的因果联系,特别是心肌梗死(MI)后的修复反应,在很大程度上仍然未知。在这项研究中,我们破坏了小鼠的 SCN 功能,以研究 SCN 在 MI 后心脏功能障碍中的作用。通过电损伤在小鼠中产生 SCN 的双侧消融(SCNx);通过结扎左前降支的中段(LAD)诱导心肌梗死;使用超声心动图评估心脏功能。我们表明,SCN 消融显着减轻了 MI 引起的心脏功能障碍和心脏纤维化,并促进了血管生成。RNA 测序显示 SCNx 小鼠在 MI 后第 0 天至第 3 天心脏中差异表达的基因,这些基因与炎症反应和细胞因子-细胞因子受体相互作用功能相关。值得注意的是,在 MI 后第 3 天的 SCNx 小鼠中,心脏和血清 IGF2 浓度中的胰岛素样生长因子 2(Igf2)表达水平显着升高。体外用 SCNx 小鼠在 MI 后第 3 天分离的血清刺激小鼠腹腔巨噬细胞,加速了抗炎巨噬细胞的转变,而抗体介导的 IGF2 受体中和阻断了体外巨噬细胞向抗炎表型的转变以及在 SCNx 小鼠中观察到的相应心脏保护作用MI 后。此外,通过暴露于去同步条件(恒定光照)破坏小鼠的 SCN 功能会导致类似的保护作用,并在 MI 后第 3 天导致 IGF2 表达升高。最后,缺乏昼夜节律核心基因(Ckm-cre;Bmal1 小鼠或 Per1/2 双敲除)的小鼠不会导致血清 IGF2 浓度升高,并且在 MI 后没有保护作用,表明在本研究中观察到的心脏保护作用是由 SCN 本身介导的,而不是由自我维持的分子钟介导的。总之,我们证明抑制 SCN 功能可促进 Igf2 表达,从而导致 MI 后巨噬细胞的转变和心脏修复。