Wang Feng, Liu Jia, Huang Wenhao, Cheng Ruiqing, Yin Lei, Wang Junjun, Sendeku Marshet Getaye, Zhang Yu, Zhan Xueying, Shan Chongxin, Wang Zhenxing, He Jun
CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China; School of Physics and Technology, Wuhan University, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Sci Bull (Beijing). 2020 Sep 15;65(17):1444-1450. doi: 10.1016/j.scib.2020.04.019. Epub 2020 Apr 13.
Overcoming the sub-5 nm gate length limit and decreasing the power dissipation are two main objects in the electronics research field. Besides advanced engineering techniques, considering new material systems may be helpful. Here, we demonstrate two-dimensional (2D) subthermionic field-effect transistors (FETs) with sub-5 nm gate lengths based on ferroelectric (FE) van der Waals heterostructures (vdWHs). The FE vdWHs are composed of graphene, MoS, and CuInPS acting as 2D contacts, channels, and ferroelectric dielectric layers, respectively. We first show that the as-fabricated long-channel device exhibits nearly hysteresis-free subthermionic switching over three orders of magnitude of drain current at room temperature. Further, we fabricate short-channel subthermionic FETs using metallic carbon nanotubes as effective gate terminals. A typical device shows subthermionic switching over five-to-six orders of magnitude of drain current with a minimum subthreshold swing of 6.1 mV/dec at room temperature. Our results indicate that 2D materials system is promising for advanced highly-integrated energy-efficient electronic devices.
突破5纳米以下的栅极长度限制并降低功耗是电子研究领域的两个主要目标。除了先进的工程技术外,考虑新材料系统可能会有所帮助。在此,我们展示了基于铁电(FE)范德华异质结构(vdWHs)的栅极长度小于5纳米的二维(2D)亚热电子场效应晶体管(FET)。FE vdWHs分别由石墨烯、MoS和CuInPS组成,它们分别作为二维接触层、沟道层和铁电介电层。我们首先表明,所制备的长沟道器件在室温下的漏极电流三个数量级范围内表现出几乎无滞后的亚热电子开关特性。此外,我们使用金属碳纳米管作为有效的栅极端制备了短沟道亚热电子FET。一个典型器件在室温下的漏极电流五到六个数量级范围内表现出亚热电子开关特性,最低亚阈值摆幅为6.1 mV/dec。我们的结果表明,二维材料系统对于先进的高集成度节能电子器件具有前景。