Hoover Rene L, Keffer Jessica L, Polson Shawn W, Chan Clara S
Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA.
Department of Earth Sciences, University of Delaware, Newark, Delaware, USA.
bioRxiv. 2023 Feb 8:2023.01.26.525709. doi: 10.1101/2023.01.26.525709.
The iron-oxidizing Gallionellaceae drive a wide variety of biogeochemical cycles through their metabolisms and biominerals. To better understand the environmental impacts of Gallionellaceae, we need to improve our knowledge of their diversity and metabolisms, especially any novel iron oxidation mechanisms. Here, we used a pangenomic analysis of 103 genomes to resolve Gallionellaceae phylogeny and explore the range of genomic potential. Using a concatenated ribosomal protein tree and key gene patterns, we determined Gallionellaceae has four genera, divided into two groups-iron-oxidizing bacteria (FeOB) , , and with known iron oxidases (Cyc2, MtoA) and nitrite-oxidizing bacteria (NOB) Nitrotoga with nitrite oxidase (Nxr). The FeOB and NOB have similar electron transport chains, including genes for reverse electron transport and carbon fixation. Auxiliary energy metabolisms including S oxidation, denitrification, and organotrophy were scattered throughout the Gallionellaceae FeOB. Within FeOB, we found genes that may represent adaptations for iron oxidation, including a variety of extracellular electron uptake (EEU) mechanisms. FeOB genomes encoded more predicted -type cytochromes overall, notably more multiheme -type cytochromes (MHCs) with >10 CXXCH motifs. These include homologs of several predicted outer membrane porin-MHC complexes, including MtoAB and Uet. MHCs are known to efficiently conduct electrons across longer distances and function across a wide range of redox potentials that overlap with mineral redox potentials, which can help expand the range of usable iron substrates. Overall, the results of pangenome analyses suggest that the Gallionellaceae genera , , and are primarily iron oxidizers, capable of oxidizing dissolved Fe as well as a range of solid iron or other mineral substrates.
铁氧化嘉利翁氏菌科通过其新陈代谢和生物矿物驱动着各种各样的生物地球化学循环。为了更好地理解嘉利翁氏菌科对环境的影响,我们需要增进对其多样性和新陈代谢的了解,尤其是任何新的铁氧化机制。在此,我们对103个基因组进行了泛基因组分析,以解析嘉利翁氏菌科的系统发育,并探索基因组潜力的范围。利用串联核糖体蛋白树和关键基因模式,我们确定嘉利翁氏菌科有四个属,分为两组——具有已知铁氧化酶(Cyc2、MtoA)的铁氧化细菌(FeOB)和具有亚硝酸盐氧化酶(Nxr)的亚硝酸盐氧化细菌(NOB)硝化螺菌属。FeOB和NOB具有相似的电子传递链,包括反向电子传递和碳固定的基因。包括硫氧化、反硝化作用和有机营养在内的辅助能量代谢分散在嘉利翁氏菌科FeOB中。在FeOB内,我们发现了可能代表铁氧化适应性的基因,包括多种细胞外电子摄取(EEU)机制。FeOB基因组总体上编码了更多预测的细胞色素类型,特别是更多具有>10个CXXCH基序的多血红素细胞色素(MHCs)。这些包括几种预测的外膜孔蛋白-MHC复合物的同源物,包括MtoAB和Uet。已知MHCs能有效地在更长距离上传导电子,并在与矿物氧化还原电位重叠的广泛氧化还原电位范围内发挥作用,这有助于扩大可用铁底物的范围。总体而言,泛基因组分析结果表明,嘉利翁氏菌科的属主要是铁氧化剂,能够氧化溶解态铁以及一系列固态铁或其他矿物底物。