Nguyen Ha An, Hoffer Eric D, Fagan Crystal E, Maehigashi Tatsuya, Dunham Christine M
Department of Chemistry, Emory University, Atlanta, GA USA.
Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA.
bioRxiv. 2023 Jan 29:2023.01.28.526049. doi: 10.1101/2023.01.28.526049.
Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNA in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.
在所有生物体中,快速且准确的翻译对于产生正确折叠并具有功能的蛋白质至关重要。定义蛋白质编码序列的mRNA密码子在核糖体的氨酰基(A)结合位点由tRNA解码。核糖体对mRNA密码子和tRNA反密码子之间的相互作用进行广泛监测,以确保tRNA选择的准确性。虽然其他合成DNA和RNA的聚合酶能够纠正错误掺入,但核糖体无法纠正错误。相反,当发生错误掺入时,错配的tRNA-mRNA对会移动到肽基(P)位点,从这个位置会导致A位点的保真度降低,从而触发肽基转移后质量控制。这种降低的保真度使得更多错误的tRNA被接受,并且释放因子2(RF2)能够识别有义密码子,导致异常肽的水解。在此,我们展示了核糖体的晶体结构,其中P位点含有一个与mRNA密码子存在U•U错配的tRNA。我们发现,当错配发生在P位点密码子-反密码子相互作用的第二位时,A位点密码子的第一个核苷酸会从mRNA路径翻转出来,与解码中心高度保守的16S rRNA核苷酸A1493结合。我们提出,这种mRNA核苷酸的错位会导致A位点的保真度降低。此外,这种状态可能为RF2提供一个机会,使其在错误的新生链破坏细胞蛋白质组之前启动过早终止。