Suppr超能文献

一种估算城郊公交出行中实时继发感染情况的算法:印度金奈市应对新冠疫情的经验

An algorithm to estimate the real time secondary infections in sub-urban bus travel: COVID-19 epidemic experience at Chennai Metropolitan city India.

作者信息

Arumugam Ganesh Ram, Ambikapathy Bakiya, Krishnamurthy Kamalanand, Kumar Ashwani, De Britto Lourduraj

机构信息

Department of Instrumentation Engineering, MIT Campus, Anna University, Chennai, 600044 Tamil Nadu India.

Indian Council of Medical Research, Vector Control Research Centre, Puducherry, 605006 India.

出版信息

Virusdisease. 2023 Mar;34(1):39-49. doi: 10.1007/s13337-022-00804-9. Epub 2023 Feb 2.

Abstract

UNLABELLED

Globalization, global climatic changes, and human behavior pose threats to highly pathogenic avian influenza (HPAI) virus spillover from animals to human. Current SARS-CoV2 transmission continues in several countries despite drastic reduction in COVID-19 cases following world-wide containment measures including RNA vaccines. China reimposed lockdown in November 2022 following the surge in commercial hubs. Urban population density and intracity travel in over-crowded public transport play crucial roles in early transition to an exponential phase of the epidemic in metro-cities. Based on the SARS-CoV2 transmission during the lockdown period in Chennai metro-city, we developed an algorithm that mimics a real-time scenario of passengers boarding and deboarding at each bus-stop on a trip of 36.1 km in 21G bus service in Chennai city to understand the pattern of secondary infections on a daily basis. The algorithm was simulated to estimate R0, and the COVID-19 secondary infections was estimated for each bus trip. Results showed that the R0 depended on the boarding and deboarding of the infected individuals at various bus stops. R0 varied from 0 to 1.04, each trip generated 5-9 secondary infections and four bus stops as potential locations for a higher transmission level. More than 80% of the working population in metro-cities depends on unorganized sectors, and separate mitigation strategies must be in place for successful epidemic containment. The developed algorithm has significant public health relevance and can be utilized to draw necessary containment plans in near future in the event of new COVID-19 wave or any other similar epidemic.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13337-022-00804-9.

摘要

未标注

全球化、全球气候变化和人类行为对高致病性禽流感(HPAI)病毒从动物传播给人类构成威胁。尽管在包括RNA疫苗在内的全球防控措施实施后,新冠病毒病例大幅减少,但目前在几个国家仍存在新冠病毒传播。2022年11月,在商业中心疫情激增后,中国重新实施了封锁措施。城市人口密度以及在过度拥挤的公共交通中进行的市内出行,在大城市疫情早期过渡到指数增长阶段中起着关键作用。基于钦奈大城市封锁期间的新冠病毒传播情况,我们开发了一种算法,该算法模拟了钦奈市21G公交线路36.1公里行程中每个公交站点乘客上下车的实时场景,以了解每日二次感染的模式。通过模拟该算法来估计R0,并针对每次公交行程估计新冠病毒二次感染情况。结果表明,R0取决于受感染个体在各个公交站点的上下车情况。R0值在0到1.04之间变化,每次行程产生5 - 9例二次感染,有四个公交站点是传播水平较高的潜在地点。大城市超过80%的劳动人口依赖非正规部门,必须制定单独的缓解策略才能成功控制疫情。所开发的算法具有重要的公共卫生意义,可用于在未来新的新冠疫情浪潮或任何其他类似疫情发生时制定必要的防控计划。

补充信息

在线版本包含可在10.1007/s13337-022-00804-9获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e665/10050506/63aaafa6f520/13337_2022_804_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验