Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Department of Pathology, Microbiology, & Immunology, Nashville, Tennessee, USA.
Cytometry B Clin Cytom. 2023 Sep;104(5):344-355. doi: 10.1002/cyto.b.22114. Epub 2023 Feb 7.
Cyclic immunohistochemistry (cycIHC) uses sequential rounds of colorimetric immunostaining and imaging for quantitative mapping of location and number of cells of interest. Additionally, cycIHC benefits from the speed and simplicity of brightfield microscopy, making the collection of entire tissue sections and slides possible at a trivial cost compared to other high dimensional imaging modalities. However, large cycIHC datasets currently require an expert data scientist to concatenate separate open-source tools for each step of image pre-processing, registration, and segmentation, or the use of proprietary software. Here, we present a unified and user-friendly pipeline for processing, aligning, and analyzing cycIHC data - Cyclic Analysis of Single-Cell Subsets and Tissue Territories (CASSATT). CASSATT registers scanned slide images across all rounds of staining, segments individual nuclei, and measures marker expression on each detected cell. Beyond straightforward single cell data analysis outputs, CASSATT explores the spatial relationships between cell populations. By calculating the log odds of interaction frequencies between cell populations within tissues and tissue regions, this pipeline helps users identify populations of cells that interact-or do not interact-at frequencies that are greater than those occurring by chance. It also identifies specific neighborhoods of cells based on the assortment of neighboring cell types that surround each cell in the sample. The presence and location of these neighborhoods can be compared across slides or within distinct regions within a tissue. CASSATT is a fully open source workflow tool developed to process cycIHC data and will allow greater utilization of this powerful staining technique.
循环免疫组织化学(cycIHC)使用一系列比色免疫染色和成像来定量绘制感兴趣细胞的位置和数量。此外,cycIHC 受益于明场显微镜的速度和简单性,与其他高维成像模式相比,可以以微不足道的成本收集整个组织切片和载玻片。然而,目前大型 cycIHC 数据集需要专家数据科学家来串联用于图像预处理、配准和分割的各个开源工具,或者使用专有软件。在这里,我们提出了一个统一且用户友好的循环免疫组织化学数据分析处理、对齐和分析管道 - 单细胞亚群和组织区域的循环分析(CASSATT)。CASSATT 对所有染色轮次的扫描幻灯片图像进行配准,对单个细胞核进行分割,并测量每个检测到的细胞上的标记表达。除了简单的单细胞数据分析输出之外,CASSATT 还探索了细胞群体之间的空间关系。通过计算组织和组织区域内细胞群体之间相互作用频率的对数优势,该管道帮助用户识别在高于随机发生频率的情况下相互作用或不相互作用的细胞群体。它还根据围绕样本中每个细胞的相邻细胞类型的组合来识别特定的细胞邻域。这些邻域的存在和位置可以在幻灯片之间或组织内的不同区域内进行比较。CASSATT 是一个完全开源的工作流程工具,用于处理 cycIHC 数据,并将允许更广泛地利用这种强大的染色技术。