Laboratoire de physique de l'École normale supérieure, CNRS, PSL University, Paris, France.
Spinal Sensory Signaling team, Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Paris, France.
Elife. 2023 Feb 7;12:e81279. doi: 10.7554/eLife.81279.
One challenge in neuroscience is to understand how information flows between neurons to trigger specific behaviors. Granger causality (GC) has been proposed as a simple and effective measure for identifying dynamical interactions. At single-cell resolution however, GC analysis is rarely used compared to directionless correlation analysis. Here, we study the applicability of GC analysis for calcium imaging data in diverse contexts. We first show that despite underlying linearity assumptions, GC analysis successfully retrieves non-linear interactions in a synthetic network simulating intracellular calcium fluctuations of spiking neurons. We highlight the potential pitfalls of applying GC analysis on real calcium signals, and offer solutions regarding the choice of GC analysis parameters. We took advantage of calcium imaging datasets from motoneurons in embryonic zebrafish to show how the improved GC can retrieve true underlying information flow. Applied to the network of brainstem neurons of larval zebrafish, our pipeline reveals strong driver neurons in the locus of the mesencephalic locomotor region (MLR), driving target neurons matching expectations from anatomical and physiological studies. Altogether, this practical toolbox can be applied on population calcium signals to increase the selectivity of GC to infer flow of information across neurons.
神经科学的一个挑战是理解信息如何在神经元之间流动,以触发特定的行为。格兰杰因果关系(GC)被提议作为一种简单而有效的方法来识别动力学相互作用。然而,与无方向相关分析相比,在单细胞分辨率下,GC 分析很少使用。在这里,我们研究了 GC 分析在不同背景下对钙成像数据的适用性。我们首先表明,尽管存在线性假设,但 GC 分析可以成功地从模拟尖峰神经元细胞内钙波动的合成网络中恢复非线性相互作用。我们强调了在实际钙信号上应用 GC 分析的潜在陷阱,并提供了关于 GC 分析参数选择的解决方案。我们利用来自胚胎斑马鱼运动神经元的钙成像数据集,展示了改进的 GC 如何检索真实的潜在信息流。应用于幼鱼脑桥神经元的网络,我们的管道揭示了中脑运动区域(MLR)中的强驱动神经元,驱动目标神经元与解剖学和生理学研究的预期相匹配。总之,这个实用的工具箱可以应用于群体钙信号,以提高 GC 推断神经元之间信息流的选择性。