Suppr超能文献

用于跨作物物种和基因型的非转基因基因组编辑的工程化生物可容纳 RNA 病毒载体。

Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes.

机构信息

State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.

State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.

出版信息

Mol Plant. 2023 Mar 6;16(3):616-631. doi: 10.1016/j.molp.2023.02.003. Epub 2023 Feb 7.

Abstract

CRISPR/Cas genome-editing tools provide unprecedented opportunities for basic plant biology research and crop breeding. However, the lack of robust delivery methods has limited the widespread adoption of these revolutionary technologies in plant science. Here, we report an efficient, non-transgenic CRISPR/Cas delivery platform based on the engineered tomato spotted wilt virus (TSWV), an RNA virus with a host range of over 1000 plant species. We eliminated viral elements essential for insect transmission to liberate genome space for accommodating large genetic cargoes without sacrificing the ability to infect plant hosts. The resulting non-insect-transmissible viral vectors enabled effective and stable in planta delivery of Cas12a and Cas9 nucleases as well as adenine and cytosine base editors. In systemically infected plant tissues, the deconstructed TSWV-derived vectors induced efficient somatic gene mutations and base conversions in multiple crop species with little genotype dependency. Plants with heritable, bi-allelic mutations could be readily regenerated by culturing the virus-infected tissues in vitro without antibiotic selection. Moreover, we showed that antiviral treatment with ribavirin during tissue culture cleared the viral vectors in 100% of regenerated plants and further augmented the recovery of heritable mutations. Because many plants are recalcitrant to stable transformation, the viral delivery system developed in this work provides a promising tool to overcome gene delivery bottlenecks for genome editing in various crop species and elite varieties.

摘要

CRISPR/Cas 基因组编辑工具为基础植物生物学研究和作物育种提供了前所未有的机会。然而,缺乏稳健的递送方法限制了这些革命性技术在植物科学中的广泛应用。在这里,我们报告了一种基于工程化的番茄斑萎病毒(TSWV)的高效、非转基因的 CRISPR/Cas 递送平台,该病毒宿主范围超过 1000 种植物。我们消除了病毒中对昆虫传播至关重要的元件,从而释放了基因组空间,以容纳大型遗传货物,而不牺牲感染植物宿主的能力。由此产生的非昆虫传播病毒载体能够有效地、稳定地在植物体内递送电穿孔酶 Cas12a 和 Cas9 以及腺嘌呤和胞嘧啶碱基编辑器。在系统感染的植物组织中,经过解构的 TSWV 衍生载体在多种作物中诱导了高效的体细胞基因突变和碱基转换,几乎没有基因型依赖性。通过在体外培养病毒感染的组织,可以很容易地从植物中再生出具有可遗传的、双等位基因突变的植物,而无需抗生素选择。此外,我们表明,在组织培养过程中用利巴韦林进行抗病毒处理可以清除 100%再生植物中的病毒载体,并进一步增加可遗传突变的恢复。由于许多植物对稳定转化具有抗性,因此这项工作中开发的病毒递送系统为在各种作物和优良品种中进行基因组编辑提供了一种有前途的克服基因递送瓶颈的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验