Suppr超能文献

应用于乳腺上皮细胞的并行多维分析框架揭示 EMT 的调控原则。

Parallelized multidimensional analytic framework applied to mammary epithelial cells uncovers regulatory principles in EMT.

机构信息

Department of Biochemistry, Boston University School of Medicine, Boston University, 71 East Concord Street, Boston, MA, 02118, USA.

Department of Computer Science, University of Miami, 1356 Memorial Drive, Coral Gables, FL, 33146, USA.

出版信息

Nat Commun. 2023 Feb 8;14(1):688. doi: 10.1038/s41467-023-36122-x.

Abstract

A proper understanding of disease etiology will require longitudinal systems-scale reconstruction of the multitiered architecture of eukaryotic signaling. Here we combine state-of-the-art data acquisition platforms and bioinformatics tools to devise PAMAF, a workflow that simultaneously examines twelve omics modalities, i.e., protein abundance from whole-cells, nucleus, exosomes, secretome and membrane; N-glycosylation, phosphorylation; metabolites; mRNA, miRNA; and, in parallel, single-cell transcriptomes. We apply PAMAF in an established in vitro model of TGFβ-induced epithelial to mesenchymal transition (EMT) to quantify >61,000 molecules from 12 omics and 10 timepoints over 12 days. Bioinformatics analysis of this EMT-ExMap resource allowed us to identify; -topological coupling between omics, -four distinct cell states during EMT, -omics-specific kinetic paths, -stage-specific multi-omics characteristics, -distinct regulatory classes of genes, -ligand-receptor mediated intercellular crosstalk by integrating scRNAseq and subcellular proteomics, and -combinatorial drug targets (e.g., Hedgehog signaling and CAMK-II) to inhibit EMT, which we validate using a 3D mammary duct-on-a-chip platform. Overall, this study provides a resource on TGFβ signaling and EMT.

摘要

要正确理解疾病的病因,需要对真核信号的多层次架构进行长期的系统规模重建。在这里,我们结合最先进的数据采集平台和生物信息学工具,设计了 PAMAF,这是一种同时检查 12 种组学模式的工作流程,即来自整个细胞、核、外泌体、分泌组和膜的蛋白质丰度;N-糖基化、磷酸化;代谢物;mRNA、miRNA;以及并行的单细胞转录组。我们在 TGFβ 诱导的上皮间质转化(EMT)的体外模型中应用 PAMAF,从 12 个组学和 10 个时间点在 12 天内定量了超过 61000 个分子。对这个 EMT-ExMap 资源的生物信息学分析使我们能够识别;-组学之间的拓扑耦合,-EMT 期间的四个不同细胞状态,-组学特异性的动力学路径,-阶段特异性的多组学特征,-不同的基因调控类别,-通过整合 scRNAseq 和亚细胞蛋白质组学来识别配体-受体介导的细胞间串扰,以及-组合药物靶点(例如 Hedgehog 信号和 CAMK-II)来抑制 EMT,我们使用 3D 乳腺导管在芯片平台上进行了验证。总的来说,这项研究提供了一个关于 TGFβ 信号和 EMT 的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2de4/9908882/602369470750/41467_2023_36122_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验