Suppr超能文献

Cu-Ag 界面诱导的弱 CO 结合位点促进 CO 电还原为多碳液体产物。

Weak CO binding sites induced by Cu-Ag interfaces promote CO electroreduction to multi-carbon liquid products.

机构信息

State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.

College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.

出版信息

Nat Commun. 2023 Feb 8;14(1):698. doi: 10.1038/s41467-023-36411-5.

Abstract

Electrochemical reduction of carbon monoxide to high-value multi-carbon (C) products offers an appealing route to store sustainable energy and make use of the chief greenhouse gas leading to climate change, i.e., CO. Among potential products, C liquid products such as ethanol are of particular interest owing to their high energy density and industrial relevance. In this work, we demonstrate that Ag-modified oxide-derive Cu catalysts prepared via high-energy ball milling exhibit near 80% Faradaic efficiencies for C liquid products at commercially relevant current densities (>100 mA cm) in the CO electroreduction in a microfluidic flow cell. Such performance is retained in an over 100-hour electrolysis in a 100 cm membrane electrode assembly (MEA) electrolyzer. A method based on surface-enhanced infrared absorption spectroscopy is developed to characterize the CO binding strength on the catalyst surface. The lower C and O affinities of the Cu-Ag interfacial sites in the prepared catalysts are proposed to be responsible for the enhanced selectivity for C oxygenates, which is the experimental verification of recent computational predictions.

摘要

一氧化碳的电化学还原为高附加值的多碳(C)产品提供了一种有吸引力的途径,可用于储存可持续能源并利用主要的温室气体来应对气候变化,即 CO。在潜在的产品中,C 液体产品,如乙醇,由于其高能量密度和工业相关性而特别有趣。在这项工作中,我们证明了通过高能球磨制备的 Ag 修饰氧化物衍生的 Cu 催化剂在微流体流动电池中的 CO 电还原中,在商业相关的电流密度(>100 mA cm)下,对于 C 液体产物具有近 80%的法拉第效率。这种性能在 100 小时以上的 100 cm 膜电极组件(MEA)电解槽中的电解中得以保留。开发了一种基于表面增强红外吸收光谱的方法来表征催化剂表面上的 CO 结合强度。所制备的催化剂中 Cu-Ag 界面位的较低 C 和 O 亲和力被认为是对 C 含氧化合物增强选择性的原因,这是对最近计算预测的实验验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e0/9908878/465d3a639fcf/41467_2023_36411_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验