Sanders Owen Davis
Nebraska Medical Center, Omaha, NE, USA.
J Alzheimers Dis Rep. 2023 Jan 9;7(1):1-19. doi: 10.3233/ADR-220047. eCollection 2023.
Oxidative stress, inflammation, and amyloid-β are Alzheimer's disease (AD) hallmarks that cause each other and other AD hallmarks. Most amyloid-β-lowering, antioxidant, anti-inflammatory, and antimicrobial AD clinical trials failed; none stopped or reversed AD. Although signs suggest an infectious etiology, no pathogen accumulated consistently in AD patients. Neuropathology, neuronal cell culture, rodent, genome-wide association, epidemiological, biomarker, and clinical studies, plus analysis using Hill causality criteria and revised Koch's postulates, indicate that the virus-like oxidative damage-associated molecular-pattern (DAMP) cytosolic and cell-free nucleic acids accumulated in AD patients' brains likely drive neuroinflammation, synaptotoxicity, and neurotoxicity. Cytosolic oxidatively-damaged mitochondrial DNA accumulated outside mitochondria dose-dependently in preclinical AD and AD patients' hippocampal neurons, and in AD patients' neocortical neurons but not cerebellar neurons or glia. In oxidatively-stressed neural cells and rodents' brains, cytosolic oxidatively-damaged mitochondrial DNA accumulated and increased antiviral and inflammatory proteins, including cleaved caspase-1, interleukin-1β, and interferon-β. Cytosolic double-stranded RNA and DNA are DAMPs that induce antiviral interferons and/or inflammatory proteins by oligomerizing with various innate-immune pattern-recognition receptors, e.g., cyclic GMP-AMP synthase and the nucleotide-binding-oligomerization-domain-like-receptor-pyrin-domain-containing-3 inflammasome. In oxidatively-stressed neural cells, cytosolic oxidatively-damaged mitochondrial DNA caused synaptotoxicity and neurotoxicity. Depleting mitochondrial DNA prevented these effects. Additionally, cell-free nucleic acids accumulated in AD patients' blood, extracellular vesicles, and senile plaques. Injecting cell-free nucleic acids bound to albumin oligomers into wild-type mice's hippocampi triggered antiviral interferon-β secretion; interferon-β injection caused synapse degeneration. Deoxyribonuclease-I treatment appeared to improve a severe-AD patient's Mini-Mental Status Exam by 15 points. Preclinical and clinical studies of deoxyribonuclease-I and a ribonuclease for AD should be prioritized.
氧化应激、炎症和β-淀粉样蛋白是阿尔茨海默病(AD)的特征,它们相互引发并导致其他AD特征。大多数降低β-淀粉样蛋白、抗氧化、抗炎和抗菌的AD临床试验均告失败;无一能阻止或逆转AD。尽管有迹象表明存在感染病因,但在AD患者中没有病原体持续累积。神经病理学、神经元细胞培养、啮齿动物、全基因组关联、流行病学、生物标志物和临床研究,以及使用希尔因果标准和修订后的科赫法则进行的分析表明,AD患者大脑中积累的病毒样氧化损伤相关分子模式(DAMP)胞质和无细胞核酸可能驱动神经炎症、突触毒性和神经毒性。在临床前AD和AD患者的海马神经元中,以及AD患者的新皮质神经元而非小脑神经元或神经胶质细胞中,线粒体之外胞质中氧化损伤的线粒体DNA呈剂量依赖性积累。在氧化应激的神经细胞和啮齿动物大脑中,胞质中氧化损伤的线粒体DNA积累并增加抗病毒和炎症蛋白,包括裂解的半胱天冬酶-1、白细胞介素-1β和干扰素-β。胞质双链RNA和DNA是DAMPs,它们通过与各种先天免疫模式识别受体(如环状GMP-AMP合酶和含核苷酸结合寡聚化结构域样受体吡啉结构域3炎性小体)寡聚化来诱导抗病毒干扰素和/或炎症蛋白。在氧化应激的神经细胞中,胞质中氧化损伤的线粒体DNA导致突触毒性和神经毒性。耗尽线粒体DNA可防止这些效应。此外,无细胞核酸在AD患者的血液、细胞外囊泡和老年斑中积累。将与白蛋白寡聚体结合的无细胞核酸注射到野生型小鼠的海马中会触发抗病毒干扰素-β的分泌;注射干扰素-β会导致突触退化。脱氧核糖核酸酶-I治疗似乎使一名重度AD患者的简易精神状态检查得分提高了15分。应优先开展针对AD的脱氧核糖核酸酶-I和核糖核酸酶的临床前和临床研究。