Suppr超能文献

2-硫尿苷在 tRNA 反密码子摆动位置提高翻译效率的结构和机制基础。

Structural and mechanistic basis for enhanced translational efficiency by 2-thiouridine at the tRNA anticodon wobble position.

机构信息

Department of Chemistry, Portland State University, PO Box 751, Portland, OR 97207, USA; Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.

出版信息

J Mol Biol. 2013 Oct 23;425(20):3888-906. doi: 10.1016/j.jmb.2013.05.018. Epub 2013 May 28.

Abstract

The 2-thiouridine (s(2)U) at the wobble position of certain bacterial and eukaryotic tRNAs enhances aminoacylation kinetics, assists proper codon-anticodon base pairing at the ribosome A-site, and prevents frameshifting during translation. By mass spectrometry of affinity-purified native Escherichia coli tRNA1(Gln)UUG, we show that the complete modification at the wobble position 34 is 5-carboxyaminomethyl-2-thiouridine (cmnm(5)s(2)U). The crystal structure of E. coli glutaminyl-tRNA synthetase (GlnRS) bound to native tRNA1(Gln) and ATP demonstrates that cmnm(5)s(2)U34 improves the order of a previously unobserved 11-amino-acid surface loop in the distal β-barrel domain of the enzyme and imparts other local rearrangements of nearby amino acids that create a binding pocket for the 2-thio moiety. Together with previously solved structures, these observations explain the degenerate recognition of C34 and modified U34 by GlnRS. Comparative pre-steady-state aminoacylation kinetics of native tRNA1(Gln), synthetic tRNA1(Gln) containing s(2)U34 as sole modification, and unmodified wild-type and mutant tRNA1(Gln) and tRNA2(Gln) transcripts demonstrates that the exocyclic sulfur moiety improves tRNA binding affinity to GlnRS 10-fold compared with the unmodified transcript and that an additional fourfold improvement arises from the presence of the cmnm(5) moiety. Measurements of Gln-tRNA(Gln) interactions at the ribosome A-site show that the s(2)U modification enhances binding affinity to the glutamine codons CAA and CAG and increases the rate of GTP hydrolysis by E. coli EF-Tu by fivefold.

摘要

2-硫尿嘧啶(s(2)U)在某些细菌和真核 tRNA 的摆动位置增强氨酰化动力学,有助于核糖体 A 位正确的密码子-反密码子碱基配对,并防止翻译过程中的移码。通过对亲和纯化的天然大肠杆菌 tRNA1(Gln)UUG 的质谱分析,我们表明在摆动位置 34 上的完全修饰是 5-羧基氨甲基-2-硫尿嘧啶(cmnm(5)s(2)U)。结合 ATP 的大肠杆菌谷氨酰-tRNA 合成酶(GlnRS)与天然 tRNA1(Gln)的晶体结构表明,cmnm(5)s(2)U34 改善了先前未观察到的酶远端β桶结构域中 11 个氨基酸表面环的有序性,并引起附近氨基酸的其他局部重排,从而为 2-硫部分创建一个结合口袋。与以前解决的结构一起,这些观察结果解释了 GlnRS 对 C34 和修饰的 U34 的简并识别。天然 tRNA1(Gln)、仅含有 s(2)U34 作为唯一修饰的合成 tRNA1(Gln)以及未修饰的野生型和突变 tRNA1(Gln)和 tRNA2(Gln)转录本的预稳态氨酰化动力学比较表明,与未修饰的转录本相比,硫代环外硫原子使 tRNA 与 GlnRS 的结合亲和力提高了 10 倍,并且由于存在 cmnm(5)部分,结合亲和力再提高了 4 倍。在核糖体 A 位测量 Gln-tRNA(Gln)相互作用表明,s(2)U 修饰增强了与谷氨酰胺密码子 CAA 和 CAG 的结合亲和力,并使大肠杆菌 EF-Tu 的 GTP 水解速率提高了 5 倍。

相似文献

1
Structural and mechanistic basis for enhanced translational efficiency by 2-thiouridine at the tRNA anticodon wobble position.
J Mol Biol. 2013 Oct 23;425(20):3888-906. doi: 10.1016/j.jmb.2013.05.018. Epub 2013 May 28.
6
Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase.
Biochimie. 1993;75(12):1083-90. doi: 10.1016/0300-9084(93)90007-f.
8
Switching tRNA(Gln) identity from glutamine to tryptophan.
Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3463-7. doi: 10.1073/pnas.89.8.3463.
9
MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli.
Biochemistry. 2003 Feb 4;42(4):1109-17. doi: 10.1021/bi026536+.
10
Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity.
Biochemistry. 1993 Dec 28;32(51):14210-9. doi: 10.1021/bi00214a021.

引用本文的文献

1
Activation of Caged Functional RNAs by An Oxidative Transformation.
Chembiochem. 2025 Apr 14;26(8):e202401056. doi: 10.1002/cbic.202401056. Epub 2025 Jan 23.
3
Anticodon stem-loop tRNA modifications influence codon decoding and frame maintenance during translation.
Semin Cell Dev Biol. 2024 Feb 15;154(Pt B):105-113. doi: 10.1016/j.semcdb.2023.06.003. Epub 2023 Jun 28.
5
Identification of a novel 5-aminomethyl-2-thiouridine methyltransferase in tRNA modification.
Nucleic Acids Res. 2023 Feb 28;51(4):1971-1983. doi: 10.1093/nar/gkad048.
6
Expansion of the genetic code through reassignment of redundant sense codons using fully modified tRNA.
Nucleic Acids Res. 2022 Oct 28;50(19):11374-11386. doi: 10.1093/nar/gkac846.
7
Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases.
RNA Biol. 2022;19(1):386-410. doi: 10.1080/15476286.2022.2055923. Epub 2021 Dec 31.
8
Multiplex suppression of four quadruplet codons via tRNA directed evolution.
Nat Commun. 2021 Sep 29;12(1):5706. doi: 10.1038/s41467-021-25948-y.
9
Disease-associated mutations in a bifunctional aminoacyl-tRNA synthetase gene elicit the integrated stress response.
J Biol Chem. 2021 Oct;297(4):101203. doi: 10.1016/j.jbc.2021.101203. Epub 2021 Sep 17.

本文引用的文献

1
MODOMICS: a database of RNA modification pathways--2013 update.
Nucleic Acids Res. 2013 Jan;41(Database issue):D262-7. doi: 10.1093/nar/gks1007. Epub 2012 Oct 30.
2
Discovery and biological characterization of geranylated RNA in bacteria.
Nat Chem Biol. 2012 Nov;8(11):913-9. doi: 10.1038/nchembio.1070. Epub 2012 Sep 16.
3
RCrane: semi-automated RNA model building.
Acta Crystallogr D Biol Crystallogr. 2012 Aug;68(Pt 8):985-95. doi: 10.1107/S0907444912018549. Epub 2012 Jul 17.
4
Kinetics of tRNA folding monitored by aminoacylation.
RNA. 2012 Mar;18(3):569-80. doi: 10.1261/rna.030080.111. Epub 2012 Jan 27.
5
Modifications modulate anticodon loop dynamics and codon recognition of E. coli tRNA(Arg1,2).
J Mol Biol. 2012 Mar 2;416(4):579-97. doi: 10.1016/j.jmb.2011.12.054. Epub 2012 Jan 3.
6
8
Mass spectrometry-based quantification of pseudouridine in RNA.
J Am Soc Mass Spectrom. 2011 Aug;22(8):1363-72. doi: 10.1007/s13361-011-0137-5. Epub 2011 May 3.
10
Heat maps for intramolecular communication in an RNP enzyme encoding glutamine.
Structure. 2011 Mar 9;19(3):386-96. doi: 10.1016/j.str.2010.12.017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验