Suppr超能文献

基于生物正交表面功能化工程化的骨靶向外泌体模拟物用于骨组织工程。

Bone-Targeting Exosome Mimetics Engineered by Bioorthogonal Surface Functionalization for Bone Tissue Engineering.

机构信息

Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States.

Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, California 90095, United States.

出版信息

Nano Lett. 2023 Feb 22;23(4):1202-1210. doi: 10.1021/acs.nanolett.2c04159. Epub 2023 Feb 10.

Abstract

Extracellular vesicles have received a great interest as safe biocarriers in biomedical engineering. There is a need to develop more efficient delivery strategies to improve localized therapeutic efficacy and minimize off-target adverse effects. Here, exosome mimetics (EMs) are reported for bone targeting involving the introduction of hydroxyapatite-binding moieties through bioorthogonal functionalization. Bone-binding ability of the engineered EMs is verified with hydroxyapatite-coated scaffolds and an ex vivo bone-binding assay. The EM-bound construct provided a biocompatible substrate for cell adhesion, proliferation, and osteogenic differentiation. Particularly, the incorporation of Smoothened agonist (SAG) into EMs greatly increased the osteogenic capacity through the activation of hedgehog signaling. Furthermore, the scaffold integrated with EM/SAG significantly improved in vivo reossification. Lastly, biodistribution studies confirmed the accumulation of systemically administered EMs in bone tissue. This facile engineering strategy could be a versatile tool to promote bone regeneration, offering a promising nanomedicine approach to the sophisticated treatment of bone diseases.

摘要

细胞外囊泡作为生物医学工程中安全的生物载体受到了广泛关注。需要开发更有效的递药策略来提高局部治疗效果并降低脱靶副作用。本研究通过生物正交功能化引入羟基磷灰石结合基团,报告了用于骨靶向的外泌体模拟物(EMs)。通过将工程化的 EMs 与羟基磷灰石涂层支架和体外骨结合测定实验,验证了 EMs 的骨结合能力。EM 结合构建体为细胞黏附、增殖和成骨分化提供了一种生物相容的基底。特别地,通过激活 hedgehog 信号通路,将 Smoothened 激动剂(SAG)掺入 EMs 中极大地提高了成骨能力。此外,与 EM/SAG 整合的支架显著促进了体内再矿化。最后,生物分布研究证实了系统给予的 EMs 在骨组织中的积累。这种简便的工程策略可能是促进骨再生的通用工具,为复杂的骨病治疗提供了一种有前途的纳米医学方法。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验