Suppr超能文献

基于深度残差网络的混合队列自动睡眠分期。

Automatic sleep stage classification with deep residual networks in a mixed-cohort setting.

机构信息

Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.

Stanford Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA.

出版信息

Sleep. 2021 Jan 21;44(1). doi: 10.1093/sleep/zsaa161.

Abstract

STUDY OBJECTIVES

Sleep stage scoring is performed manually by sleep experts and is prone to subjective interpretation of scoring rules with low intra- and interscorer reliability. Many automatic systems rely on few small-scale databases for developing models, and generalizability to new datasets is thus unknown. We investigated a novel deep neural network to assess the generalizability of several large-scale cohorts.

METHODS

A deep neural network model was developed using 15,684 polysomnography studies from five different cohorts. We applied four different scenarios: (1) impact of varying timescales in the model; (2) performance of a single cohort on other cohorts of smaller, greater, or equal size relative to the performance of other cohorts on a single cohort; (3) varying the fraction of mixed-cohort training data compared with using single-origin data; and (4) comparing models trained on combinations of data from 2, 3, and 4 cohorts.

RESULTS

Overall classification accuracy improved with increasing fractions of training data (0.25%: 0.782 ± 0.097, 95% CI [0.777-0.787]; 100%: 0.869 ± 0.064, 95% CI [0.864-0.872]), and with increasing number of data sources (2: 0.788 ± 0.102, 95% CI [0.787-0.790]; 3: 0.808 ± 0.092, 95% CI [0.807-0.810]; 4: 0.821 ± 0.085, 95% CI [0.819-0.823]). Different cohorts show varying levels of generalization to other cohorts.

CONCLUSIONS

Automatic sleep stage scoring systems based on deep learning algorithms should consider as much data as possible from as many sources available to ensure proper generalization. Public datasets for benchmarking should be made available for future research.

摘要

研究目的

睡眠阶段评分由睡眠专家手动进行,容易受到评分规则主观解释的影响,评分者之间的可靠性较低。许多自动系统依赖于少数小规模数据库来开发模型,因此对新数据集的泛化能力未知。我们研究了一种新的深度神经网络,以评估几个大规模队列的泛化能力。

方法

使用来自五个不同队列的 15684 项多导睡眠图研究开发了深度神经网络模型。我们应用了四种不同的场景:(1)模型中时间尺度变化的影响;(2)单队列在其他队列中的表现相对于其他队列在单队列中的表现,以及大小、更大或相等的队列;(3)与使用单起源数据相比,混合队列训练数据的分数变化;(4)比较基于 2、3 和 4 个队列数据组合训练的模型。

结果

整体分类准确性随着训练数据分数的增加而提高(0.25%:0.782±0.097,95%置信区间[0.777-0.787];100%:0.869±0.064,95%置信区间[0.864-0.872]),随着数据来源数量的增加而提高(2:0.788±0.102,95%置信区间[0.787-0.790];3:0.808±0.092,95%置信区间[0.807-0.810];4:0.821±0.085,95%置信区间[0.819-0.823])。不同的队列对其他队列表现出不同程度的概括。

结论

基于深度学习算法的自动睡眠阶段评分系统应尽可能多地考虑来自尽可能多来源的数据,以确保适当的概括。应提供基准测试的公共数据集供未来研究使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验