Suppr超能文献

二级结构预测与中程相互作用。

Secondary structure predictions and medium range interactions.

作者信息

Williams R W, Chang A, Juretić D, Loughran S

机构信息

Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799.

出版信息

Biochim Biophys Acta. 1987 Nov 26;916(2):200-4. doi: 10.1016/0167-4838(87)90109-9.

Abstract

Several authors have proposed that predictions of protein secondary structure derived from statistical information about the known structures can be improved when information about neighboring residues participating in short and medium range interactions is included. A substantial improvement shown here indicates that current methods of including this information are not more successful than methods that do not. Evaluations of the Chou and Fasman method (Adv. Enzymol. 47 (1978) 45-148), that does not include information about interactions (except in averaging), have shown it to be about 49% correct for three states (helix, beta-sheet and undefined). In comparison, the method of Garnier et al. (J. Mol. Biol. 120 (1978) 97-120), that explicitly includes information about neighboring residues, has an accuracy of 57% residues correct for three states. However, we have obtained an 8% improvement for predictions of secondary structure based on the algorithm by Chou and Fasman. The improvements are obtained by eliminating many rules and by choosing the best decision constants for structure assignments. The simplified method described here is 57% correct for three states using preference values calculated in 1978.

摘要

几位作者提出,如果将参与短程和中程相互作用的相邻残基信息包含在内,那么基于已知结构统计信息得出的蛋白质二级结构预测结果可以得到改善。此处显示的显著改善表明,当前包含此类信息的方法并不比不包含该信息的方法更成功。对不包含相互作用信息(平均时除外)的Chou和Fasman方法(《酶学进展》47卷(1978年)第45 - 148页)的评估表明,对于三种状态(螺旋、β折叠和无规卷曲),其预测正确率约为49%。相比之下,明确包含相邻残基信息的Garnier等人的方法(《分子生物学杂志》120卷(1978年)第97 - 120页),对于三种状态的预测正确率为57%。然而,我们基于Chou和Fasman算法在二级结构预测方面取得了8%的提升。通过去除许多规则并为结构分配选择最佳决策常数实现了这些改进。此处描述的简化方法在使用1978年计算的偏好值时,对于三种状态的预测正确率为57%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验