Suppr超能文献

基于单通道脑电图的自动睡眠分期中的深度学习

Deep Learning in Automatic Sleep Staging With a Single Channel Electroencephalography.

作者信息

Fu Mingyu, Wang Yitian, Chen Zixin, Li Jin, Xu Fengguo, Liu Xinyu, Hou Fengzhen

机构信息

School of Science, China Pharmaceutical University, Nanjing, China.

College of Engineering, University of California, Berkeley, Berkeley, CA, United States.

出版信息

Front Physiol. 2021 Mar 3;12:628502. doi: 10.3389/fphys.2021.628502. eCollection 2021.

Abstract

This study centers on automatic sleep staging with a single channel electroencephalography (EEG), with some significant findings for sleep staging. In this study, we proposed a deep learning-based network by integrating attention mechanism and bidirectional long short-term memory neural network (AT-BiLSTM) to classify wakefulness, rapid eye movement (REM) sleep and non-REM (NREM) sleep stages N1, N2 and N3. The AT-BiLSTM network outperformed five other networks and achieved an accuracy of 83.78%, a Cohen's kappa coefficient of 0.766 and a macro F1-score of 82.14% on the PhysioNet Sleep-EDF Expanded dataset, and an accuracy of 81.72%, a Cohen's kappa coefficient of 0.751 and a macro F1-score of 80.74% on the DREAMS Subjects dataset. The proposed AT-BiLSTM network even achieved a higher accuracy than the existing methods based on traditional feature extraction. Moreover, better performance was obtained by the AT-BiLSTM network with the frontal EEG derivations than with EEG channels located at the central, occipital or parietal lobe. As EEG signal can be easily acquired using dry electrodes on the forehead, our findings might provide a promising solution for automatic sleep scoring without feature extraction and may prove very useful for the screening of sleep disorders.

摘要

本研究聚焦于基于单通道脑电图(EEG)的自动睡眠分期,并取得了一些关于睡眠分期的重要发现。在本研究中,我们通过整合注意力机制和双向长短期记忆神经网络(AT-BiLSTM)提出了一种基于深度学习的网络,用于对清醒、快速眼动(REM)睡眠和非快速眼动(NREM)睡眠阶段N1、N2和N3进行分类。在PhysioNet睡眠-EDF扩展数据集上,AT-BiLSTM网络优于其他五个网络,准确率达到83.78%,科恩卡帕系数为0.766,宏F1分数为82.14%;在DREAMS受试者数据集上,准确率为81.72%,科恩卡帕系数为0.751,宏F1分数为80.74%。所提出的AT-BiLSTM网络甚至比基于传统特征提取的现有方法具有更高的准确率。此外,与位于中央、枕叶或顶叶的EEG通道相比,使用额叶EEG导联的AT-BiLSTM网络表现更好。由于使用前额上的干电极可以轻松获取EEG信号,我们的发现可能为无需特征提取的自动睡眠评分提供一个有前景的解决方案,并且可能对睡眠障碍的筛查非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e22a/7965953/73ceeec213fe/fphys-12-628502-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验