Department of Neuroscience, University of Minnesota, 4-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA.
Acta Neuropathol. 2023 May;145(5):597-610. doi: 10.1007/s00401-023-02547-3. Epub 2023 Feb 10.
α-Synuclein is a major component of Lewy bodies (LB) and Lewy neurites (LN) appearing in the postmortem brain of Parkinson's disease (PD) and other α-synucleinopathies. While most studies of α-synucleinopathies have focused on neuronal and synaptic alterations as well as dysfunctions of the astrocytic homeostatic roles, whether the bidirectional astrocyte-neuronal communication is affected in these diseases remains unknown. We have investigated whether the astrocyte Ca excitability and the glutamatergic gliotransmission underlying astrocyte-neuronal signaling are altered in several transgenic mouse models related to α-synucleinopathies, i.e., mice expressing high and low levels of the human A53T mutant α-synuclein (G2-3 and H5 mice, respectively) globally or selectively in neurons (iSyn mice), mice expressing human wildtype α-synuclein (I2-2 mice), and mice expressing A30P mutant α-synuclein (O2 mice). Combining astrocytic Ca imaging and neuronal electrophysiological recordings in hippocampal slices of these mice, we have found that compared to non-transgenic mice, astrocytes in G2-3 mice at different ages (1-6 months) displayed a Ca hyperexcitability that was independent of neurotransmitter receptor activation, suggesting that the expression of α-synuclein mutant A53T altered the intrinsic properties of astrocytes. Similar dysregulation of the astrocyte Ca signal was present in H5 mice, but not in I2-2 and O2 mice, indicating α-synuclein mutant-specific effects. Moreover, astrocyte Ca hyperexcitability was absent in mice expressing the α-synuclein mutant A53T selectively in neurons, indicating that the effects on astrocytes were cell-autonomous. Consistent with these effects, glutamatergic gliotransmission was enhanced in G2-3 and H5 mice, but was unaffected in I2-2, O2 and iSyn mice. These results indicate a cell-autonomous effect of pathogenic A53T expression in astrocytes that may contribute to the altered neuronal and synaptic function observed in α-synucleinopathies.
α-突触核蛋白是路易体(LB)和路易神经突(LN)的主要成分,出现在帕金森病(PD)和其他α-突触核蛋白病的死后大脑中。虽然大多数 α-突触核蛋白病的研究都集中在神经元和突触改变以及星形胶质细胞稳态功能障碍上,但这些疾病中是否存在双向星形胶质细胞-神经元通讯的改变尚不清楚。我们研究了在几种与 α-突触核蛋白病相关的转基因小鼠模型中,星形胶质细胞 Ca 兴奋性和星形胶质细胞-神经元信号转导所依赖的谷氨酸能神经递质释放是否发生改变,即表达高水平和低水平人 A53T 突变 α-突触核蛋白的转基因小鼠(G2-3 和 H5 小鼠,分别)在神经元中全局或选择性表达(iSyn 小鼠)、表达人野生型 α-突触核蛋白的小鼠(I2-2 小鼠)和表达 A30P 突变 α-突触核蛋白的小鼠(O2 小鼠)。在这些小鼠的海马切片中结合星形胶质细胞 Ca 成像和神经元电生理记录,我们发现与非转基因小鼠相比,不同年龄(1-6 个月)的 G2-3 小鼠的星形胶质细胞表现出 Ca 过度兴奋,这种兴奋不依赖于神经递质受体激活,表明 A53T 突变的 α-突触核蛋白表达改变了星形胶质细胞的内在特性。在 H5 小鼠中也存在类似的星形胶质细胞 Ca 信号失调,但在 I2-2 和 O2 小鼠中则不存在,表明存在 α-突触核蛋白突变特异性效应。此外,在神经元中选择性表达 α-突触核蛋白突变 A53T 的小鼠中,星形胶质细胞 Ca 过度兴奋不存在,表明这种效应是细胞自主的。与这些效应一致,G2-3 和 H5 小鼠中的谷氨酸能神经递质释放增强,但在 I2-2、O2 和 iSyn 小鼠中则没有。这些结果表明,在星形胶质细胞中,致病性 A53T 表达具有细胞自主效应,可能导致在 α-突触核蛋白病中观察到的神经元和突触功能改变。