Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, 8092, Zurich, Switzerland.
IBM Research Zurich, Säumerstrasse 4, 8803, Rüschilikon, Switzerland.
Nat Commun. 2023 Feb 10;14(1):750. doi: 10.1038/s41467-023-36274-w.
The shape recovery ability of shape-memory alloys vanishes below a critical size (50 nm), which prevents their practical applications at the nanoscale. In contrast, ferroic materials, even when scaled down to dimensions of a few nanometers, exhibit actuation strain through domain switching, though the generated strain is modest (1%). Here, we develop freestanding twisted architectures of nanoscale ferroic oxides showing shape-memory effect with a giant recoverable strain (>8%). The twisted geometrical design amplifies the strain generated during ferroelectric domain switching, which cannot be achieved in bulk ceramics or substrate-bonded thin films. The twisted ferroic nanocomposites allow us to overcome the size limitations in traditional shape-memory alloys and open new avenues in engineering large-stroke shape-memory materials for small-scale actuating devices such as nanorobots and artificial muscle fibrils.
形状记忆合金的形状恢复能力在临界尺寸以下(约 50nm)消失,这阻止了它们在纳米尺度上的实际应用。相比之下,铁电材料即使缩小到几个纳米的尺寸,通过畴转变也能表现出驱动应变,尽管产生的应变适中(约 1%)。在这里,我们开发了具有形状记忆效应的独立式纳米铁电氧化物扭曲结构,其具有超过 8%的可恢复大应变。扭曲的几何设计放大了铁电畴转变过程中产生的应变,而这在块状陶瓷或基底结合的薄膜中是无法实现的。扭曲的铁电纳米复合材料使我们能够克服传统形状记忆合金的尺寸限制,并为纳米机器人和人工肌肉原纤维等小型驱动装置的大冲程形状记忆材料开辟新途径。